R006-34 A 会場 :9/27 AM2 (10:45-12:30) 10:45~11:00

#Kumar Sandeep¹⁾,Miyoshi Yoshizumi¹⁾,Vania Jordanova²⁾,Kistler L M³⁾,Asamura Kazushi⁴⁾,Yokota Shoichiro⁵⁾,Kasahara Satoshi⁶⁾,Kazama Yoichi⁷⁾,S -Y Wang⁷⁾,Sunny W Y TAM⁸⁾,Mitani Takefumi⁴⁾,N Higashio⁴⁾,Keika Kunihiro⁶⁾,Hori Tomoaki¹⁾,Jun Chae Woo¹⁾,Matsuoka Ayako⁹⁾,Imajo Shun⁹⁾,Shinohara Iku⁴⁾

⁽¹ISEE, Nagoya University,⁽²Los Alamos National Laboratory, Los Alamos, NM, USA,⁽³University of New Hampshire, Durham, NH, USA,⁽⁴ISAS, Japan Aerospace Exploration Agency, Japan,⁽⁵Osaka University, Japan,⁽⁶University of Tokyo, Japan,⁽⁷ASIAA, Taipei, Taiwan

Pressure and temperature distribution of ions/electrons in inner magnetosphere during CIR/CME driven storms using Arase satellite

#Sandeep Kumar¹, Yoshizumi Miyoshi¹, Jordanova Vania², L M Kistler³, Kazushi Asamura⁴, Shoichiro Yokota⁵, Satoshi Kasahara⁶, Yoichi Kazama⁷, Wang S -Y⁷, TAM Sunny W Y⁸, Takefumi Mitani⁴, Higashio N⁴, Kunihiro Keika⁶, Tomoaki Hori¹, Chae Woo Jun¹, Ayako Matsuoka⁹, Shun Imajo⁹, Iku Shinohara⁴

⁽¹ISEE, Nagoya University,⁽²Los Alamos National Laboratory, Los Alamos, NM, USA,⁽³University of New Hampshire, Durham, NH, USA,⁽⁴ISAS, Japan Aerospace Exploration Agency, Japan,⁽⁵Osaka University, Japan,⁽⁶University of Tokyo, Japan,⁽⁷ASIAA, Taipei, Taiwan,⁽⁸Institute of Space and Plasma Sciences, National Cheng Kung University, Taiwan,⁽⁹Graduate School of Science, Kyoto University

Geomagnetic storms are caused by corotating interaction regions (CIRs) associated with high-speed solar wind streamers (HSSs), and coronal mass ejections (CMEs). Due to the large-scale solar wind structures, there are significant differences of the storm evolutions between these two storm drivers. These differences involve the dynamics of radiation belts, the ring current, the Earth's plasma sheet, magnetospheric convection, and the saturation of the polar cap potential etc. It has been shown that ion and electron distributions of CME/CIR-driven storms are different, especially for recovery phase [Miyoshi and Kataoka, 2005]. The plasma temperature and rate of ion heating in the plasma sheet are important elements of understanding how the dynamics of the ring current and the magnetosphere vary between these two types of storms. We will examine statistically the spatial and temporal distribution of electrons and ions pressure/temperature during main phase, early recovery and late recovery phases for the selected CIR and CME storms using in situ plasma/particle data obtained by Arase during 2017-2022.