R006-41 A 会場 :9/27 PM1 (13:45-15:30) 14:00~14:15

#篠原 育¹⁾,楊 敬軒³⁾,風間 洋一²⁾,Wang Shiang-Yu²⁾,田 采祐⁵⁾,笠原 慧³⁾,横田 勝一郎⁴⁾,桂華 邦裕³⁾,堀 智昭⁵⁾,浅村 和史¹⁾,三谷 烈史¹⁾,松岡 彩子⁶⁾ (¹宇宙機構/宇宙研,⁽²ASIAA,⁽³東京大学,⁽⁴大阪大,⁽⁵名大 ISEE,⁽⁶京都大学,⁽⁷宇宙研,⁽⁸宇宙研,⁽⁹京都大学,⁽¹⁰京都大 学

Evolution of electron temperature anisotropy associated with injections and its relation to chorus wave excitation

#Iku Shinohara¹⁾,Jingxuan Yang³⁾,Yoichi Kazama²⁾,Shiang-Yu Wang²⁾,ChaeWoo Jun⁵⁾,Satoshi Kasahara³⁾,Shoichiro Yokota⁴⁾,Kunihiro Keika³⁾,Tomoaki Hori⁵⁾,Kazushi Asamura¹⁾,Takefumi Mitani¹⁾,Ayako Matsuoka⁶⁾

⁽¹Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science,⁽²Academia Sinica Institute of Astronomy and Astrophysics,⁽³The University of Tokyo,⁽⁴Osaka University,⁽⁵Institute for Space-Earth Environmental Research, Nagoya University,⁽⁶Graduate School of Science, Kyoto University,⁽⁷Japan Aerospace Exploration Agency,⁽⁸Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science,⁽⁹Graduate School of Science, Kyoto University,⁽¹⁰Graduate School of Science, Kyoto University

Recent explorations of the inner magnetosphere reveal that whistler chorus waves play an essential role in accelerating and losing high-energy electrons. It is believed that electron temperature anisotropy is the free energy of chorus wave excitation and is provided by injections from the magnetotail. However, since there are fewer plasma observations in the inner magnetospheric region, the reality of the distribution of the electron temperature anisotropy is not well understood. Based on a statistical analysis of electron temperature anisotropy in the inner magnetospheric region using data obtained from low-energy and medium-energy electron instruments (LEP-e and MEP-e) onboard Arase (ERG), we confirmed that the boundary of the temperature anisotropy distribution is consistent with the marginal condition of the temperature anisotropy instability. Further, we also examined the contribution of injections to temperature anisotropy by focusing on data obtained during injection events. Our preliminary result does not show that electron injections distribute around the marginal condition of the instability. The result is partly because we evaluated the temperature anisotropy of electron injections using the average value of 10 minutes time scale, and temperature anisotropy associated with injections might be smeared out. This presentation will discuss the time and spatial evolution of temperature anisotropy associated with electron injections and its relation to instability conditions.