#西野 真木¹⁾,原田 裕己²⁾,関 華奈子³⁾,Halekas Jasper⁴⁾,Espley Jared⁵⁾,Dibraccio Gina⁵⁾ (¹ 宇宙機構,⁽² 京大・理,⁽³ 東大理・地球惑星科学専攻,⁽⁴University of Iowa,⁽⁵NASA

Strong bulk plasma acceleration in the Martian magnetosheath under low Alfven Mach number solar wind

#Masaki Nishino¹⁾,Yuki Harada²⁾,Kanako Seki³⁾,Jasper Halekas⁴⁾,Jared Espley⁵⁾,Gina DiBraccio⁵⁾ ⁽¹Japan Aerospace Exploration Agency,⁽²Graduate School of Science, Kyoto University,⁽³Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo,⁽⁴University of Iowa,⁽⁵NASA

The magnetosheath environment around Mars is a key for understanding interactions between the solar wind, the ionosphere, and the induced magnetosphere. The dependence of the magnetosheath plasma on the solar wind Alfven Mach number (M_A) has been studied statistically, while no detailed study of very low M_A events at Mars has been conducted yet. Here we report MAVEN observations of strong bulk plasma acceleration in the magnetosheath near the ionopause around the terminator under the low M_A solar wind condition (M_A ~2-3). In these events, the solar wind speed was about 400 km/s and decelerated to 250 km/s at the bow shock, while the speed of the accelerated flows in the magnetosheath was as high as 550 km/s. The interplanetary magnetic field was of the Parker spiral configuration, and the accelerated flows were detected in the -E hemisphere and almost perpendicular to the local magnetosheath magnetic fields. The accelerated flows around the Martian ionopause may be a counterpart of those found in the terrestrial magnetosheath under the low M_A solar wind condition; that is, the strong acceleration may be attributed to both magnetic pressure gradient and tension force. We will discuss the possible effect of the low M_A solar wind on the Martian atmospheric escape in the -E hemisphere, where snowplows can play a substantial role under the typical M_A values.