#三好 由純¹⁾, チェン ルイ²⁾, 田 采祐¹⁾, 栗田 怜³⁾, 松田 昇也⁴⁾, 齊藤 慎司⁵⁾, 加藤 雄人⁶⁾, 浅村 和史⁷⁾, 寺本 万里子⁸⁾, 山本 和弘¹⁾, Kumar Sandeep¹⁾, Porunakatu Radhakrishna Shreedevi¹⁾, 風間 洋一⁹⁾, ウォング シャンユー⁹⁾, 堀 智昭¹⁾, 篠 原 育⁷⁾, 笠原 禎也⁴⁾, 笠原 慧¹⁰⁾, 横田 勝一郎¹¹⁾, 桂華 邦裕¹⁰⁾, 三谷 烈史⁷⁾, 高島 健⁷⁾, 土屋 史紀⁶⁾, 熊本 篤志⁶⁾, 新堀 淳樹¹⁾, 松岡 彩子³⁾

⁽¹ 名大 ISEE, ⁽²Auburn University, ⁽³ 京都大学 生存研, ⁽⁴ 金沢大学, ⁽⁵ 情報通信研究機構, ⁽⁶ 東北大・理・地球物理, ⁽⁷ 宇宙研, ⁽⁸ 九工大, ⁽⁹ASIAA, ⁽¹⁰ 東京大学, ⁽¹¹ 大阪大

Origins of chorus waves in the inner magnetosphere

#Yoshizumi Miyoshi¹, Rui Chen², ChaeWoo Jun¹, Satoshi Kurita³, Shoya Matsuda⁴, Shinji Saito⁵, Yuto Katoh⁶, Kazushi Asamura⁷, Mariko Teramoto⁸, Kazuhiro Yamamoto¹, Sandeep Kumar¹, Shreedevi Porunakatu Radhakrishna¹, Yoichi Kazama⁹, Shiangu Yu Wang⁹, Tomoaki Hori¹, Iku Shinohara⁷, Yoshiya Kasahara⁴, Satoshi Kasahara¹⁰, Shoichiro Yokota¹¹, Kunihiro Keika¹⁰, Takefumi Mitani⁷, Takeshi Takashima⁷, Fuminori Tsuchiya⁶, Atsushi Kumamoto⁶, Atsuki Shinobori¹, Ayako Matsuoka³

⁽¹Institute for Space-Earth Environemental Research, Nagoya University, ⁽²Auburn University, ⁽³Research Institute for Sustainable Humanosphere, Kyoto University, ⁽⁴Kanazawa University, ⁽⁵National Institute of Information and Communications Technology, ⁽⁶Department of Geophysics, Graduate School of Science, Tohoku University, ⁽⁷Japan Aerospace Exploration Agency, ⁽⁸Kyushu Institute of Technology, ⁽⁹Academia Sinica Institute of Astronomy and Astrophysics, ⁽¹⁰The University of Tokyo, ⁽¹¹Osaka University

Non-linear whistler mode waves, known as chorus waves, are commonly observed in the inner magnetosphere. These waves play a crucial role in the dynamics of energetic electrons, including their acceleration, which contributes to the formation of radiation belts, and the scattering of electrons across a wide energy range, leading to phenomena such as pulsating auroras and relativistic electron microbursts. Recent studies suggest that non-linear processes are significant in the generation of these waves, particularly through the formation of electron holes in phase space. Theoretical threshold amplitudes have been proposed as a proxy for estimating the conditions necessary to trigger these non-linear processes. In this study, we investigate the generation of chorus waves in the inner magnetosphere in association with 1) substorm injections, 2) Pc5 pulsations, and 3) solar wind dynamic pressure enhancements. Using data from the Arase satellite (LEPe/MEPe/HEP, PWE and MGF), we analyze the time variations in threshold amplitudes before and after chorus wave generation. In all three cases, it is expected that the linear growth rate increases due to temperature anisotropy resulting from betatron acceleration. A decrease in the threshold amplitude, which is essential for triggering the generation of chorus waves, is observed. This decrease is attributed to the enhancement of hot electron density through injections in case 1) and Pc5 modulation in case 2) and changes in field line topology in case 3). We conclude that both an increased linear growth rate and decreased threshold amplitudes contribute to the non-linear triggering of chorus waves.