R006-P32 ポスター1:11/24 PM1/PM2 (13:15-18:15)

#風間 洋一¹⁾, 三好 由純²⁾, 加藤 雄人³⁾, 笠羽 康正⁴⁾, 栗田 怜⁵⁾, 笠原 禎也⁶⁾, 小嶋 浩嗣⁷⁾, 桂華 邦裕⁸⁾, 松田 昇也⁹⁾, 田 采祐¹⁰⁾, 堀 智昭¹¹⁾, Wang Bo-Jhou¹⁾, Wang Shiang-Yu¹⁾, Tam Sunny¹²⁾, 浅村 和史¹³⁾, 松岡 彩子¹⁴⁾, 寺本 万里子¹⁵⁾, 篠 原 育¹⁶⁾

⁽¹ASIAA, ⁽² 名大 ISEE, ⁽³ 東北大・理・地球物理, ⁽⁴ 東北大・理, ⁽⁵ 京都大学 生存研, ⁽⁶ 金沢大, ⁽⁷ 京大, ⁽⁸ 東大・理, ⁽⁹ 金 沢大学, ⁽¹⁰ 名大 ISEE 研, ⁽¹¹ 名大 ISEE, ⁽¹²Institute of Space and Plasma Sciences, National Cheng Kung University, ⁽¹³ 宇 宙研, ⁽¹⁴ 京都大学, ⁽¹⁵ 九工大, ⁽¹⁶ 宇宙機構/宇宙研

Noon-midnight difference in latitudinal occurrence of whistler-mode chorus waves observed by the Arase satellite

#Yoichi Kazama¹, Yoshizumi Miyoshi², Yuto Katoh³, Yasumasa Kasaba⁴, Satoshi Kurita⁵, Yoshiya Kasahara⁶, Hirotsugu Kojima⁷, Kunihiro Keika⁸, Shoya Matsuda⁹, ChaeWoo Jun¹⁰, Tomoaki Hori¹¹, Bo-Jhou Wang¹, Shiang-Yu Wang¹, Sunny Tam¹², Kazushi Asamura¹³, Ayako Matsuoka¹⁴, Mariko Teramoto¹⁵, Iku Shinohara¹⁶

⁽¹Academia Sinica Institute of Astronomy and Astrophysics, ⁽²Institute for Space-Earth Environement Research, Nagoya University, ⁽³Department of Geophysics, Graduate School of Science, Tohoku University, ⁽⁴Planetary Plasma and Atmospheric Research Center ^(PPARC), Tohoku University, ⁽⁵Research Institute for Sustainable Humanosphere, Kyoto University, ⁽⁶Emerging Media Initiative, Kanazawa University, ⁽⁷Kyoto university, ⁽⁸Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, ⁽⁹Kanazawa University, ⁽¹⁰Institute for Space-Earth Environmental Research, ⁽¹¹Institute for Space-Earth Environmental Research, ⁽¹¹Institute for Space-Earth Environmental Research, Nagoya University, ⁽¹²Institute of Space and Plasma Sciences, National Cheng Kung University, ⁽¹³Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science

We present spatial occurrence distributions of whistler-mode chorus waves and their correlation with low-energy electrons, based on 5.1-year observations of the Arase satellite. The detailed statistical analysis indicates that strong chorus waves are predominantly observed near the magnetic equator in the postmidnight sector, and the active region of chorus waves shifts to higher latitudes with moderate chorus emissions as electrons drift eastward toward the noon sector. The differences in chorus intensity and latitudinal occurrence between noon and midnight can be explained by the nonlinear growth theory of whistler waves. Specifically, these differences are influenced by threshold amplitude controlled by hot electron density and magnetic field inhomogeneity determined by geomagnetic field configuration.