#篠原 育¹⁾, 楊 敬軒²⁾, 風間 洋一³⁾, Wang Shiang-Yu³⁾, Tam Sunny W. Y.⁴⁾, 田 采祐⁵⁾, 笠原 慧⁶⁾, 横田 勝一郎⁷⁾, 桂華 邦 裕⁸⁾, 山本 和弘⁹⁾, 堀 智昭¹⁰⁾, 浅村 和史¹¹⁾, 三好 由純¹²⁾, 三谷 烈史¹³⁾, 笠原 禎也¹⁴⁾, 松田 昇也¹⁵⁾, 松岡 彩子¹⁶⁾, 寺本 万里子¹⁷⁾

⁽¹ 宇宙機構/宇宙研, ⁽² 東大・理・地惑, ⁽³ASIAA, ⁽⁴NCKU, ⁽⁵ 名大 ISEE 研, ⁽⁶ 東京大学, ⁽⁷ 大阪大, ⁽⁸ 東大・理, ⁽⁹ 名大 ISEE, ⁽¹⁰ 名大 ISEE, ⁽¹¹ 宇宙研, ⁽¹² 名大 ISEE, ⁽¹³ 宇宙研, ⁽¹⁴ 金沢大, ⁽¹⁵ 金沢大学, ⁽¹⁶ 京都大学, ⁽¹⁷ 九工大

Chorus wave activity observed at marginal condition of electron temperature anisotropy instability in the inner magnetosphere

#Iku Shinohara¹), Jingxuan Yang²), Yoichi Kazama³), Shiang-Yu Wang³), Sunny W. Y. Tam⁴), ChaeWoo Jun⁵), Satoshi Kasahara⁶), Shoichiro Yokota⁷), Kunihiro Keika⁸), Kazuhiro Yamamoto⁹), Tomoaki Hori¹⁰), Kazushi Asamura¹¹), Yoshizumi Miyoshi¹²), Takefumi Mitani¹³), Yoshiya Kasahara¹⁴), Shoya Matsuda¹⁵), Ayako Matsuoka¹⁶), Mariko Teramoto¹⁷)

⁽¹Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science, ⁽²Earth and Planetary Science, The University of Tokyo, ⁽³Academia Sinica Institute of Astronomy and Astrophysics, ⁽⁴National Cheng Kung University, ⁽⁵Institute for Space-Earth Environmental Research, ⁽⁶The University of Tokyo, ⁽⁷Osaka University, ⁽⁸Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, ⁽⁹Institute for Space-Earth Environmental Research ⁽¹¹Japan Aerospace Exploration Agency, ⁽¹²Institute for Space-Earth Environmental Research, Nagoya University, ⁽¹³Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, ⁽¹⁴Emerging Media Initiative, Kanazawa University, ⁽¹⁵Kanazawa University, ⁽¹⁶Graduate School of Science, Kyoto University, ⁽¹⁷Kyushu Institute of Technology

Whistler chorus mode waves observed in the inner magnetosphere are believed to be caused by the free energy of electron temperature anisotropy, which is created by injections or plasma convection from the magnetotail. To investigate this, we analyzed electron temperature anisotropy data from the Arase satellite, specifically electron data (LEP-e and MEP-e) observed from March 2017 to October 2019. As presented in the last SGEPSS meeting, we identified the marginal condition of the whistler anisotropy instability in the data obtained near the magnetic equator. The data points near the marginal condition are found within a limited region of Lm=5 6 6, MLT=23 6 6, and MLAT=-10 $^{+10}$, which is consistent with the higher occurrence region of the whistler chorus wave in the inner magnetosphere. Moreover, the duration during which the marginal condition is only a few minutes. In our presentation, we will report a statistical analysis of chorus wave activity observed by the PWE when the marginal condition is identified.