R006-P46

ポスター1:11/24 PM1/PM2 (13:15-18:15)

#桑原 正輝 $^{1)}$, 吉岡 和夫 $^{2)}$, 村上 豪 $^{3)}$, 吉川 一朗 $^{4)}$ $^{(1)}$ 立教大学, $^{(2)}$ 東大・新領域, $^{(3)}$ ISAS/JAXA, $^{(4)}$ 東大

The observation of the Earth's plasmasphere in extreme ultraviolet from a nanospacecraft

#Masaki Kuwabara¹⁾, Kazuo Yoshioka²⁾, Go Murakami³⁾, Ichiro Yoshikawa⁴⁾
⁽¹Rikkyo University, ⁽²The University of Tokyo, ⁽³Japan Aerospace Exploration Agency, ⁽⁴University of Tokyo

The Plasmaspheric Helium ion Observation by Enhanced New Imager in eXtreme ultraviolet (PHOENIX) onboard EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS) is an ultra-small instrument for observing the Earth's plasmasphere from a meridian view. The PHOENIX instrument is a normal-incidence telescope optimized for observing He II emission at 30.4 nm. It comprises an Mo/Si multilayer-coated mirror, an Al/C metallic thin filter, and a 2-D photon-counting device with microchannel plate and resistive anode. In May 2023, PHOENIX successfully conducted imaging observations of the Earth's plasmasphere while EQUULEUS was en route to the Earth-Moon Lagrange point 2, revealing the density structure formed along the dipole-shaped magnetic field lines. This marks the first instance of imaging the entire Earth's plasmasphere using an ultra-small instrument onboard a nano-spacecraft. In this presentation, an overview of the PHOENIX instrument and the observation results of the Earth's plasmasphere will be shown. Future applications of PHOENIX for planetary exploration will also be discussed.