R008-08 C 会場 :11/26 AM2 (10:30-12:00) 11:00~11:15

低域混成高調波のサイドバンド構造に関する粒子シミュレーション

#小谷 翼 ¹⁾, 樋田 美栄子 ²⁾, 森高 外征雄 ²⁾, 田口 聡 ¹⁾ (¹ 京大理, ⁽² 核融合研

Simulation study of the sideband structure of harmonic lower hybrid waves

#Tsubasa Kotani¹), Mieko Toida²), Toseo Moritaka²), Satoshi Taguchi¹) ⁽¹Graduate School of Science, Kyoto University, ⁽²NIFS)

Recent simulation studies have shown that the harmonic structure of lower hybrid waves (LHWs) is generated by energetic ions through non-linear wave-wave coupling (Kotani et al., 2023a; 2023b; 2024). When the LHW is excited at (k_1, ω_1) in the wavenumber-frequency plane, the harmonic structure can be characterized as $(mk_1n \ \omega_1)$ where m and n are integers. In this study, using one-dimensional, electromagnetic, particle-in-cell simulations, we investigate sidband structures excited around the harmonic modes with $(mk_1, m \ u_1)$ for low ω_{pe}/Ω_e conditions. We find that complex sideband structures can be generated when the integer 1 (l = $[\omega_{LH}/\Omega_i]$, $0 \le l < 1$) is close to the zero. Here, ω_{LH} is the lower hybrid resonance frequency, Ω_i is the ion cyclotron frequency, and [x] is the floor function. On the other hand, such structures cannot be found when l is close to the unity.