R009-04 B 会場 :11/24 PM1 (13:15-15:15) 14:00~14:15

#荻野 晃平¹⁾,原田 裕己¹⁾,西野 真木²⁾,齋藤 義文²⁾,横田 勝一郎³⁾,笠原 禎也⁴⁾,熊本 篤志⁵⁾,高橋 太⁶⁾,清水 久芳⁷⁾ (¹京都大学大学院理学研究科, ⁽²国立研究開発法人宇宙航空研究開発機構, ⁽³大阪大学大学院理学研究科, ⁽⁴金沢大学学 術メディア創成センター, ⁽⁵東北大学大学院理学研究科, ⁽⁶九州大学理学研究院, ⁽⁷東京大学地震研究所

Solar wind interaction with multiple lunar crustal magnetic anomalies: Kaguya low-altitude observations

#Kohei Ogino¹⁾, Yuki Harada¹⁾, Masaki N Nishino²⁾, Yoshifumi Saito²⁾, Shoichiro Yokota³⁾, Yoshiya Kasahara⁴⁾, Atsushi Kumamoto⁵⁾, Futoshi Takahashi⁶⁾, Hisayoshi Shimizu⁷⁾

⁽¹Department of Geophysics, Graduate School of Science, Kyoto University, ⁽²Japan Aerospace Exploration Agency, ⁽³Osaka University, ⁽⁴Emerging Media Initiative, Kanazawa University, ⁽⁵Department of Geophysics, Graduate School of Science, Tohoku University, ⁽⁶Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, ⁽⁷Earthquake Research Institute, University of Tokyo

The solar wind interaction with lunar crustal magnetic anomalies (LMAs) gives rise to various electromagnetic phenomena (e.g. formation of Hall electric fields due to ion-electron decoupling, nonadiabatic solar wind ion reflection, and plasma wave excitation). Understanding the nature of the solar wind-LMA interaction is important because it greatly affects the spatial structure and temporal variability of electromagnetic fields, which control the dynamics of charged particles near the lunar surface. However, the solar wind-LMA interaction has not been fully understood due to the small vertical spatial scales (<50 km) of LMAs compared to the typical altitude of lunar orbiters (>100 km) and the difficulty of direct observations of the interaction regions. In this study, we focus on Kaguya low-altitude observations, to comprehensively characterize the solar wind ion reflection and plasma wave excitation in the central region of the solar wind-LMA interaction over multiple LMAs with various horizontal extents. We observe relatively stronger solar wind ion reflection and whistler mode waves at 1-10 Hz over spatially extended LMAs than over spatially isolated LMAs. On the other hand, strong broadband electrostatic noise at 1-10 kHz tends to be observed over both spatially isolated and extended LMAs in the central interaction region. Also, our results suggest that direct measurements at low altitudes where Hall electric fields are formed are essential for understanding the detailed physics of the solar wind-LMA interaction. Based on the results derived from Kaguya low-altitude observations, we discuss implications for future low-altitude or lander missions to LMA.