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Titan is the only body in our solar system with an abundant atmosphere of 1 atm pressure on the surface. Titan’s atmosphere
is nitrogen-dominated (nitrogen: 94%, methane: 5%, hydrogen: 1% Magee et al., 2009), like the atmospheric composition of
past Earth just before biotic oxygen began to increase. Therefore, the evolutionary process of Titan’s atmosphere is essential
for elucidating the atmospheric evolution of the past Earth. The energy deposition to the atmosphere by Saturn’s magneto-
spheric plasma precipitation responsible for the non-thermal atmospheric ion pickup and sputtering is likely more dominant
than EUV in the upper atmosphere (Micheal et al., 2005), which is important for elucidating atmospheric evolution. Titan is
located in Saturn’s magnetosphere in almost all orbital phases and is blown by mainly the O™ and H™ in the magnetospheric
plasma (Saturn wind). However, solar wind protons H* should significantly affect the atmosphere when the magnetosphere
shrinks as the solar wind dynamic pressure increases, and Titan moves out of Saturn’s magnetosphere (Bertucci et al., 2008).
Since the global extent of non-thermal escape by the external plasma flows, the Saturn and solar winds are difficult to study
only with spacecraft observations, numerical simulations have been used in comparison with observations (Modolo et al.,
2008; Strobel, 2009; Gu et al., 2019). However, the previous studies did not treat the non-thermal escape for hydrogen and
also not the Saturn and solar winds by the same method, thus the differences in the escape rates for the two external plasma
flows were not fully discussed.

In this study, we simulated the global non-thermal escape of nitrogen and hydrogen, which are the main components of
the atmosphere, using a 3D multi-component ion magnetohydrodynamic simulation developed by Terada et al. (2009), and
evaluated the escape rate by the Saturn wind in comparison with that by the solar wind for the first time.

The non-thermal atmospheric escape was simulated under the Saturn wind conditions of 0+1:0.2[/cm?] density, 120 [km/s]
velocity, H":0.1[/cm?] density, 120 [km/s] velocity and 7.0 [nT] magnetic flux density (Sittler et al., 2009), resulting in an
escape rate of 3.6 X 1023 [/s] for nitrogen-associated ions and 9.9 X 1023 [/s] for hydrogen-associated ions. On the other
hand, under solar wind conditions with a density of 0.35 [/cm?], a velocity of 360[km/s], and 0.5[nT] magnetic flux den-
sity (Bertucci et al., 2015), it resulted in 1.4 X 1023 [/s] for the nitrogen-associated ions and are 9.1 X 1024 [/s] for the
hydrogen-associated ions. These results indicate that the Saturn wind suppresses the escape of the hydrogen-associated ions
and enhances that of nitrogen-associated ions compared to the solar wind. This suggests that Saturn and solar winds control
the abundance of hydrogen in Titan’s atmosphere. The Saturn wind promotes a more hydrogen-rich reduced atmospheric
composition, and the solar wind promotes oxidation. The quantitative evaluation of the escape rates for each ion species and
the escape mechanisms still need to be evaluated, which we investigate in detail in the future. In this presentation, we report
the current status of the above.
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