S002-07 A 会場 :11/25 PM1 (13:15-15:15) 13:35~13:50 #三好 由純 $^{1)}$, 篠原 育 $^{2)}$, 高島 健 $^{2)}$, 浅村 和史 $^{2)}$, 三谷 烈史 $^{2)}$, 東尾 奈々 $^{2)}$, 笠原 慧 $^{3)}$, 横田 勝一郎 $^{4)}$, 片岡 龍峰 $^{5)}$, 田 采 祐 $^{1)}$, Kumar Sandeep $^{1)}$, Porunakatu Radhakrishna Shreedevi $^{1)}$, カリオコスキ ミラ $^{1)}$, 栗田 怜 $^{6)}$, 加藤 雄人 $^{7)}$, 堀 智昭 $^{1)}$, 桂華 邦裕 $^{3)}$, 風間 洋一 $^{8)}$, ウォング シャンユー $^{8)}$, 土屋 史紀 $^{7)}$, 熊本 篤志 $^{7)}$, 笠原 禎也 $^{9)}$, 松田 昇也 $^{9)}$, 新堀 淳樹 $^{1)}$, 北 村 成寿 $^{1)}$, 松岡 彩子 $^{10)}$, 寺本 万里子 $^{11)}$, 今城 峻 $^{12)}$, 山本 和弘 $^{1)}$ (1 名大 ISEE, (2 宇宙機構/宇宙研, (3 東京大学, (4 大阪大, (5 極地研, (6 京都大学 生存研, (7 東北大・理・地球物理, (8 ASIAA, (9 金沢大, (10 京都大学, (11 九工大, (12 京大・地磁気センター ## Arase satellite observations of the inner magnetosphere and radiation belts during the May 2024 geospace storm #Yoshizumi Miyoshi¹⁾, Iku Shinohara²⁾, Takeshi Takashima²⁾, Kazushi Asamura²⁾, Takefumi Mitani²⁾, Nana Higashio²⁾, Satoshi Kasahara³⁾, Shoichiro Yokota⁴⁾, Ryuho Kataoka⁵⁾, ChaeWoo Jun¹⁾, Sandeep Kumar¹⁾, Shreedevi Porunakatu Radhakrishna¹⁾, Milla Kalliokoski¹⁾, Satoshi Kurita⁶⁾, Yuto Katoh⁷⁾, Tomoaki Hori¹⁾, Kunihiro Keika³⁾, Yoichi Kazama⁸⁾, Shiang-Yu Wang⁸⁾, Fuminori Tsuchiya⁷⁾, Atsushi Kumamoto⁷⁾, Yoshiya Kasahara⁹⁾, Shoya Matsuda⁹⁾, Atsuki Shinbori¹⁾, Naritoshi Kitamura¹⁾, Ayako Matsuoka¹⁰⁾, Mariko Teramoto¹¹⁾, Shun Imajo¹²⁾, Kazuhiro Yamamoto¹⁾ ⁽¹Institute for Space-Earth Environement Research, Nagoya University, ⁽²Japan Aerospace Exploration Agency/Institute of Space and Astronautical Science, ⁽³The University of Tokyo, ⁽⁴Osaka University, ⁽⁵National Institute of Polar Research, ⁽⁶Research Institute for Sustainable Humanosphere, Kyoto University, ⁽⁷Department of Geophysics, Graduate School of Science, Tohoku University, ⁽⁸Academia Sinica Institute of Astronomy and Astrophysics, ⁽⁹Emerging Media Initiative, Kanazawa University, ⁽¹⁰Graduate School of Science, Kyoto University, ⁽¹¹Kyushu Institute of Technology, ⁽¹²Graduate School of Science, Kyoto University)</sup> In May 2024, during the largest geomagnetic storm of Solar Cycle 25, the Arase satellite successfully conducted comprehensive observations, observing significant phenomena in the inner magnetosphere and radiation belts. Arase often exited the dayside magnetosphere and entered the magnetosheath near its apogee, indicating substantial compression of the magnetosphere. After the storm's main phase, a rapid flux increase in energetic electrons (several MeV) was observed at L <3, marking the largest such event since Arase's launch. Additionally, the plasmasphere shifted earthward to L $^{\sim}$ 2. The enhanced electron flux at L <3 persisted for 10 to 30 days, significantly changing the near-Earth radiation environment. By analyzing Arase's data, we estimated the decay time constant of the electron flux and compared it with pitch angle scattering rates induced by plasma waves, including hiss, EMIC waves, VLF transmitters, and lightning whistlers. The initial findings suggest that continuous scattering driven by plasmaspheric hiss predominantly controls the decay of energetic electrons. In this presentation, we will report various observations made by Arase related to radiation belt and inner magnetosphere variations during this historic geomagnetic storm.