#小畑 拓実 $^{1)}$, 松野 哲男 $^{2)}$, 南 拓人 $^{1)}$, 市原 寛 $^{3)}$, 臼井 嘉哉 $^{4)}$, 巽 好幸 $^{2)}$, 杉岡 裕子 $^{1,2)}$, 大塚 宏徳 $^{4)}$, 島 伸和 $^{1,2)}$ $^{(1)}$ 神戸大学・理・惑星、 $^{(2)}$ 神戸大学・海洋底探査センター、 $^{(3)}$ 名古屋大学・地震火山研究センター、 $^{(4)}$ 東京大学・地震研究所

Resistivity structure beneath the Kikai submarine caldera volcano and tidally induced EM signals from OBEM observations

#Takumi OBATA¹⁾, Tetsuo MATSUNO²⁾, Takuto MINAMI¹⁾, Hiroshi ICHIHARA³⁾, Yoshiya USUI⁴⁾, Yoshiaki TATSUMI²⁾, Hiroko SUGIOKA^{1,2)}, Hironori OTSUKA⁴⁾, Nobukazu SEAMA^{1,2)}

⁽¹Department of Planetology, Graduate School of Science, Kobe University, ⁽²Kobe Ocean Bottom Exploration Center, Kobe University, ⁽³Earthquake and Volcano Research Center, Graduate School of Environmental Studies, Nagoya University, ⁽⁴Earthquake Research Institute, the University of Tokyo

This study aims to understand the current magma supply system that could lead to giant caldera-forming eruptions. The Kikai submarine caldera volcano, located in southern Kagoshima Prefecture, is known for the 7.3 ka caldera-forming eruption, the most recent giant caldera eruption in Japan. Topographic and petrological studies indicate that a central lava dome was emplaced by renewed magma supply after this eruption (Tatsumi et al., 2018). To investigate the current state of the magma supply system, we deployed and recovered 32 Ocean Bottom Electro-Magnetometers (OBEMs) around the Kikai Caldera between 2016 and 2022. In this presentation, we report (1) improvements in the estimation of the resistivity structure using MT surveys, and (2) characteristics of the observed data in the tidal frequency band.

- (1) Sub-seafloor resistivity structures inferred from the present dataset have previously been reported (Obata et al., 2025, JpGU). Here, we present an improved resistivity model obtained through a three-step inversion procedure, including one-dimensional structure estimation using the Occam 1D method (Constable et al., 1987).
- (2) Tidally induced magnetic variations arise as conductive seawater moves in the geomagnetic main field, and these signals can be observed both by satellites and at the seafloor. Inversions using satellite data have already been conducted (Grayver et al., 2016, 2017). Seafloor observations, however, provide access to toroidal magnetic fields that cannot be detected at satellite altitudes, thus potentially placing new constraints on resistivity modeling. From the OBEM data obtained in this study, vertical electric fields could be estimated by calculating potential differences among multiple electrodes. We present characteristics of the magnetic field data in the tidal frequency range, as well as observations of vertical electric field.