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Estimation of the vertical magnetization structure of the oceanic crust and impli-
cations for its origin
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This study aims to reveal the structural characteristics and origin of the spreading axis during oceanic crust formation by
examining its vertical magnetization structure through magnetic field observations along the transform fault scarp. In marine
environments, magnetic field observations are generally conducted by towing a magnetometer at the sea surface or by mount-
ing it on deep-sea platforms, such as autonomous underwater vehicles (AUVs). Most of the data obtained from these methods
consist of horizontal magnetic anomaly profiles. One of the few previous studies focusing on vertical magnetization structures
is Tivey (1996), which utilized the scarp topography of a transform fault to acquire vertical magnetic anomaly profiles and
revealed that the uppermost lava layer of the oceanic crust is strongly magnetized, whereas the underlying dike layer is very
weakly magnetized. In addition, Pariso and Johnson (1993) suggested from ocean drilling core samples that the gabbroic
layer beneath the dike layer retains a partial remanent magnetization. Although these findings provided rare evidence for
understanding the magnetic structure of the oceanic crust, they have not been verified in other regions, and a unified view has
yet to be established. In this study, we conducted near-seafloor magnetic field observations from deep to shallow sections of
a transform fault exposing lava, dike, and gabbro layers to determine the magnetization intensity and thickness of each layer.
Furthermore, based on the estimated magnetization structure, we discuss the structural characteristics of the spreading axis at
the time of crust formation and the factors that control them.

The observations were carried out during the KH-24-4 cruise of the R/V Hakuho Maru, targeting the scarp on the south
side of the Marie Celeste Transform Fault in the Central Indian Ridge. The southern wall of the fault forms a slope with
a maximum relief of approximately 4 km, extending for approximately 210 km, continuously exposing cross-sections of
the oceanic crust formed over the past 11 million years. After dredging operations to collect deep fault rock samples, we
simultaneously raised and towed a small three-component magnetometer mounted on the wire for dredging so that it passed
close to the scarp. The observations were conducted at six different sites along the fault scarp. After correcting the magnetic
data and referencing the standard magnetic field, we obtained magnetic anomalies caused by oceanic crustal magnetization
as variations along the vertical cross-section. Strong magnetic anomalies were observed in both the shallow and deep parts
of the scarp at each site.

Data analysis assumed a three-layer structure consisting of lava, dike, and gabbro layers, and two-dimensional forward
modeling was performed based on Talwani and Heirtzler (1964). The magnetization intensities of the three layers and the
thicknesses of the lava and dike layers were used as parameters in iterative calculations to determine the magnetization struc-
ture model that best explained the observed magnetic anomaly profiles. This procedure was applied to each observation site.

The results indicate the presence of a strongly magnetized layer (lava) about 300 m thick with magnetization exceeding 10
A/m, underlain by a weakly magnetized layer (dike) about 3,000 m thick with a magnetization of 1 — 2 A/m, and below that,
a layer (gabbro) with variable magnetization intensity (2 - 8 A/m) among sites.

The depth of the boundary between the dike and gabbro layers from the seafloor can be interpreted as the depth of the melt
lens at the time of crust formation (Detrick et al., 1987). The depth of the melt lens is known to correlate with the spreading
rate, and according to a typical model based on the thermal structure of spreading axes (Morgan and Chen, 1993), its depth
at the Central Indian Ridge (full spreading rate of 40 mm/yr) is expected to be over 6,000 m. In contrast, the melt lens depth
estimated in this study is 3,000 - 3,600 m, which is shallower than that predicted by the model. This finding indicates that the
spreading axis exhibited a higher thermal structure than is typically observed. This elevated thermal state may have resulted
from the thermal influence of a nearby hotspot.
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