R004-08

D会場: 11/26 AM1 (9:15-10:45)

9:15~9:30:00

シャツキーライズ南方のピストンコアの岩相変化と古地磁気強度推定

#臼井 洋一 ¹⁾ ⁽¹ 金沢大学

The effect of lithological changes on paleointensity estimates based on the piston cores from Shatsky Rise

#Yoichi USUI1)

(1 Kanazawa University

Sediments provide continuous paleomagnetic intensity information, making them an excellent target for reconstructing variations in the geodynamo. On the other hand, it is known that the efficiency of natural remanent magnetization acquisition depends on lithology. There are virtually no sediments with constant lithology for tens of millions of years. Thus, it is important to examine whether it is possible to quantitatively estimate the effects of lithological changes and diagenesis on the acquisition of natural remanent magnetization. In this presentation, we discuss the results of paleointensity and rock magnetic measurements of four piston cores obtained from different water depths on the southern slope of Shatsky Rise. The core obtained from the shallowest water depth (PC01) consists of carbonate ooze, while the deepest core (PC03) consists of pelagic clay with diatoms. The other cores (PC02 and PC04) show variations in carbonate content, possibly reflecting changes in productivity and CCD. All cores show positive polarity. The relatively homogeneous pelagic clay core (PC03) showed variations comparable to the standard paleointensity curve. In contrast, the other cores showed variations of about 5-7 times in the paleointensity proxy at intervals of about 1 m. In layers where the paleomagnetic intensity proxy is relatively high, both the anhysteretic remanent magnetization (ARM) and the isothermal remanent magnetization (IRM) are low. In addition, the ARM/IRM ratios and S ratios also tend to decrease. However, even in PC03, where relatively good data was obtained, the overall range of variation in the ARM/IRM ratio and S ratio is similar to that of the other cores. The main difference between the data from PC03 and other cores is that PC03 shows a nearly single linear correlation between the S ratio and IRM intensity or ARM/IRM ratio. In contrast, in other cores, the S ratio deviates from the trend and decreases in layers where the paleomagnetic intensity proxy is relatively high. So, the large changes in the paleomagnetic intensity proxy were caused by a temporary process, which is different from the process that determines the overall range of variation in rock magnetic parameters. From the fragmentary paleointensity changes, the layers where the paleointensity proxy is relatively high generally correspond to glacial periods, and they contain a higher amount of carbonate. The fact that ARM decreases more rapidly than IRM and that the S ratio decreases can be explained by the dissolution of fine-grained magnetite due to diagenesis in these layers. The presentation will also discuss the variation in paleointensity proxies due to lithological changes.

堆積物からは連続的な古地磁気強度情報が得られるため、地磁気ダイナモの変動を読み解く対象として優れている。-方、自然残留磁化の獲得効率は岩相に大きく依存することが知られている。残念ながら数千万年間岩相が一定である堆積 物はほとんど存在しない。そこで、岩相変化や続成作用が自然残留磁化獲得効率に与える影響を定量的に見積もれるかど うかの検討が、堆積物による長期的な地磁気変化の推定可能性を知るうえで重要である。本発表では、シャツキーライズ の南方斜面で異なる水深から得られた 4 本のピストンコアについて古地磁気強度および岩石磁気測定を行った結果をも とに、磁化獲得効率について議論を行う。最も浅い水深から得られたコア (PC01) は炭酸塩軟泥、最も深いコア (PC03) は珪藻を含む遠洋性粘土からなる。中間の PC02, 04 では炭酸塩含有量が変動しており、生物生産性や CCD の変化を反 映して岩相が変化していると考えられる。どのコアもすべて正極性を示し、ブリュンヌ正磁極期の堆積物である。比較的 均質な遠洋性粘土コア(PC03)は、古地磁気強度標準曲線と対比可能な変動を示した一方で、その他のコアでは 1 m 程 度の単位で、古地磁気強度プロキシの値が 5-7 倍程度変化した。古地磁気強度プロキシが相対的に高くなる層準では、非 履歴性残留磁化 (ARM)・等温残留磁化 (IRM) は共に低い。また、ARM/IRM 比と S 比も下がる傾向にある。ただし、比 較的良好なデータが得られた PC03 でも、 ARM/IRM 比や S 比の全体的な変動幅はその他のコアと同程度である。PC03 とその他のコアのデータとの主な違いは、PC03 は S 比が IRM 強度や ARM/IRM 比 などに対しほぼ単一の線型相関を示 すのに対し、その他のコアでは古地磁気強度プロキシが相対的に高くなる層準で、S 比がトレンドから外れて下がってい ることである。これは、岩石磁気パラメータの全体的な変動幅を決めるプロセスとは別に、一時的に働いたプロセスに よって古地磁気強度プロキシの大きな変化がもたらされていると解釈できる。断片的な古地磁気強度変化から、古地磁気 強度プロキシが相対的に高くなる層準はおおむね氷期に対応し、岩相的には炭酸塩含有量の多い層準に相当する。ARM が IRM より優先的に減少していること、 S 比が減少していることは、これらの層準では続成作用により、特に細粒な磁 鉄鉱が溶解しているとすると説明できる。発表ではさらに、岩相変化による古地磁気強度プロキシの変動についての検討 を合わせて紹介する。