LP、かぐや、KPLOの高高度データを用いた月地殻磁気図の作成

#イ ミンジェ $^{1)}$,鎌田 俊一 $^{1)}$ (1 北海道大学

Lunar crustal magnetic anomalies mapping using LP, Kaguya, and KPLO highaltitude data

#MINJAE LEE¹⁾, SHUNICHI KAMATA¹⁾
(1Hokkaido university

A comprehensive magnetic map of the lunar crust is essential for understanding the Moon's surface environment and investigating its thermal evolution. The study of lunar magnetism dates back to the magnetic measurements of Apollo 11 samples (Doell and Gromme, 1970) and regional magnetic observations conducted by Apollo 15 and 16, as well as Explorer 35 (Coleman et al., 1972; Ness et al., 1967). Subsequent missions such as NASA's Lunar Prospector (LP, launched in 1998) and JAXA's SELENE (Kaguya, launched in 2007) provided global magnetic field measurements at low altitudes (~30 km). Various analytical techniques have since been applied to these datasets to produce global lunar magnetic maps (e.g., Purucker, 2008; Tsunakawa et al., 2015; Ravat et al., 2020). However, due to the weak magnetic field strength and the significant influence of external fields, data collected at higher altitudes (~100 km) were not previously utilized.

The Korea Pathfinder Lunar Orbiter (KPLO), launched in 2022, is currently conducting magnetic field observations at approximately 100 km altitude. These observations have revealed that spatial patterns of magnetic anomalies at this altitude are consistent with those obtained at lower altitudes, thereby demonstrating the viability of high-altitude data for magnetic mapping (Kim et al., 2025). Detailed analysis of the KPLO data also suggests directional differences in the magnetic field compared to existing spherical harmonic expansion models, indicating a need to re-evaluate the inclination, declination, and paleomagnetic pole positions of lunar magnetic anomalies.

To date, only Level-1 (partially processed) KPLO data from the first six months of the mission have been used in prior studies, limiting data quality. In this study, we utilize two years of Level-2 (calibrated) KPLO data, along with 100 km altitude magnetic data from LP and SELENE, to produce a new global lunar crustal magnetic field map. Our analysis employs correlation filtering (von Frese et al., 1997) and the forward and backward binning method. Compared with existing spherical harmonic models, our map demonstrates higher correlation with prior studies, although it reveals differing magnetic directions in specific regions. Notably, in the region between 0 – 40° N latitude and 180 – 160° W longitude, our results align with the RSH model (Ravat et al., 2020) rather than the TSH model (Tsunakawa et al., 2015).

This newly developed magnetic map is expected to support a wide range of future studies related to lunar magnetism, dynamo processes, and the Moon's thermal evolution.

月の地殻磁気地図は月面環境の理解および月の熱進化研究に重要である。月の磁場研究の歴史は古く、アポロ 11 号 で回収されたサンプルの磁場測定 (Doell and Gromme,1970) やアポロ 15, 16 号と Explorer 35 号による軌道上からの 月の地域的な磁場観測 (Coleman et al., 1972; Ness et al., 1967) に始まる。その後 1998 年に NASA が打ち上げた Lunar Prospector (LP) と 2007 年に JAXA が打ち上げた「かぐや (SELENE)」では月全球の磁場観測が行われた。この LP とか ぐやの全球低高度(30 km)データに対して様々な解析手法を適用することで、これまでも月の磁気図作成が複数試みら れてきた (e.g., Purucker 2008; Tsunakawa et al., 2015; Ravat et al., 2020)。その際、磁場強度が弱く外部磁場の影響が大き い 100 km 高度データは用いられてこなかった。2022 年に韓国が打ち上げた月極軌道探査機 KPLO は現在も高度 100 km 付近で磁場観測を継続しており、新たな全球月磁場データが蓄積されている。KPLO による磁場観測では、高度 100 km においても磁気異常の空間パターンは低高度データと同様に確認され、高高度データの利用可能性が示された (Kim et al., 2025)。また同データの詳細な解析は、従来の二つの球面調和展開モデルとは異なる磁場方向も確認されている。こ のことは磁気異常の伏角や偏角の値、さらには古地磁気極の位置についても再解析する必要性があることを暗示してい る。しかしながら、これまでの研究では KPLO 最初の 6 ヶ月間の Level-1 (Partially Processed) データのみ利用されたた め、品質のよいデータは限られていた。そこで本研究では KPLO の 2 年間におよぶ Level-2 (Calibrated) データに加えて LP とかぐやの高度 100 km 磁場データを用いて新たな月地殻磁気図を作成する。データ解析に当たっては、相関関係フィ ルタリング (von Frese et al., 1997) と前後 Binning Method を利用する。既存の球面調和添加モデルと比較した結果、先 行研究より高い相関関係を得られたが、一部地域では異なる磁気方向が得られた、特に緯度 0-40° N、軽度 180-160° W での地域では TSH モデル (Tsunakawa et al., 2015) と RSH モデル (Ravat et al., 2020) は異なる方向を見せるが、本研 究で作成した地図は RSH モデルと同じパターンを持っていることを確認した。今後本研究で作成した地図で月磁場、ダ イナモ、熱進化などの様々な研究で活用されることが期待される。