ポスター1:11/25 AM1/AM2 (9:15-12:35)

## 数値ダイナモシミュレーションの制御パラメータの過去 40 億年間における変遷 #今木 陵太 <sup>1)</sup>, 清水 久芳 <sup>1)</sup>

(1 東京大学

## Time Evolution of Control Parameters in Numerical Dynamo Simulations Over the Past 4.0 Ga

#Ryota Imaki<sup>1)</sup>, Hisayoshi Shimizu<sup>1)</sup>
<sup>(1</sup>University of Tokyo

The geomagnetic field is essential for shielding the Earth from harmful cosmic radiation and maintaining the planet's habitability. To understand how the geomagnetic field has been sustained for over 3.5 billion years by dynamo action in the outer core and to investigate the causes of temporal changes in the frequency of geomagnetic reversals, it is important to elucidate the long-term dynamics of the outer core, considering the Earth's thermal history. However, since direct observation of the outer core is impossible and the fluid motions in the core are highly complex and nonlinear, numerical simulations have become an essential and effective tool for exploring the temporal variations of the geodynamo, state and evolution of the Earth's interior.

In geodynamo simulations, control parameters are supposed based on the spatial scale of the dynamo region (i.e., the thickness of the outer core), the physical properties of the outer core, the thermal and compositional buoyancy forces expected within it, and the angular velocity of Earth's rotation. In this study, as the first step toward constructing a geodynamo model to explain long-term evolution of the Earth's magnetic field, we estimate the time evolution of geodynamo control parameters over the past 4.0 billion years, reflecting the Earth's thermal history and long-term variation in Earth's rotation rate. We will employ a magnetohydrodynamic dynamo model using codensity characterized by four control parameters (Ekman number, Rayleigh number, Prandtl number, and magnetic Prandtl number). For thermal history calculations, the code by Landeau et al. (2022) that was based on the theory by Lister (2003) was utilized. The buoyancy forces considered in the calculations include thermal buoyancy from the cooling of the outer core, thermal buoyancy from latent heat and compositional buoyancy resulting from the release of light elements by crystallization of the inner core. These buoyancy sources are derived based on the temporal variations of heat flow and temperature at the core-mantle boundary (CMB), as well as the time evolution of the inner core radius. In this study, we assumed that the heat flow at the CMB has decreased linearly from 4.0 Ga to the present, and calculated the thermal history, including the growth of the inner core. Calculations were performed in reverse chronological order from the present to 4.0 Ga, and the results with different conditions were compared. The time evolution of Earth's angular velocity was assumed based on Touma & Wisdom (1994). These results were used to evaluate the time evolution of the four control parameters, and the parameters applicable to numerical simulations were also estimated using path theory by Aubert et al. (2017).

The results reported in this presentation are regarded as nominal variations of the control parameters under simple conditions, including spatially uniform CMB heat flow. The framework established here provides a basis for addressing more complex cases such that the heat flow of the CMB or physical quantities change in a complex manner over time. In the future, following the approach by Olson et al. (2013), we will conduct numerical dynamo simulations that incorporate factors such as spatially heterogeneous CMB heat flow in addition to the time variations in the underlying control parameters to elucidate the physical mechanisms governing the long-term evolution and reversal frequency of the Earth's magnetic field.

## References:

Aubert, J. et al. (2017) J. Fluid Mech., 813, 558-593.

doi:10.1017/jfm.2016.789

Lister, J. R. (2003) Phys. Earth Planet. Int., 140(1-3), 145-158.

doi: 10.1016/j.pepi.2003.07.007

Landeau, M. et al. (2022) Nature Reviews Earth & Environment, 3(4), 255-269.

doi: 10.1038/s43017-022-00264-1

Olson, P. et al. (2013) Phys. Earth and Planet. Int., 214, 87-103.

doi: 10.1016/j.pepi.2012.10.003

Touma, J. & Wisdom, J. (1994) Astronomical J., 108(5), 1943-1961.

doi:10.1086/117209

地球磁場は、有害な宇宙放射線から地球を守り、惑星の居住可能性を維持するうえで重要な役割を果たしている。地球磁場が外核におけるダイナモ作用によって 35 億年以上にわたって維持されてきた要因や、地磁気逆転頻度の時間的変化

の原因を理解するためには、地球の冷却史を踏まえた長期的な外核のダイナミクスを明らかにする必要がある。しかし、 外核を直接調査することは不可能であり、関与する流体運動は極めて複雑かつ非線形であるため、数値シミュレーション が地球ダイナモの時間変動と地球内部の状態や進化を探究するための不可欠かつ有効な手段となっている。

地球ダイナモシミュレーションでは、ダイナモ領域の空間スケール(外核の厚さ)に加え、外核の物性、外核内で期待される熱および組成浮力、地球自転の回転角速度に依存する制御パラメータが仮定される。本研究では、地球磁場の長期変化を説明する地球ダイナモ時間変化モデルの構築に向けた第一段階として、地球の熱史と自転速度変化を反映した、40億年にわたる地球ダイナモ制御パラメータの時間変化を推定する。具体的には、codensity を用いた磁気流体力学ダイナモモデルを想定して、4つの制御パラメータ(エクマン数、レイリー数、プラントル数、磁気プラントル数)の時間変化を対象とした。熱史計算には、Lister (2003) に基づいた Landeau et al. (2022) のコードを改良して用いた。ここで、浮力は外核冷却に伴う熱浮力、内核成長に伴う潜熱による熱浮力と軽元素放出による組成浮力を考慮した。これらの浮力源は、仮定したコア-マントル境界(CMB)における熱流量や温度変化、さらにそれらから求められる内核半径の時間発展などに基づいて導出される。本研究では、CMB の熱流量が、40億年前から現在の熱流量に至るまで線形に減少したと仮定し、内核成長を含む熱史計算を行った。計算は現在から 40億年前まで逆年代順に実施し、複数のケースについて評価した。自転角速度の時間変化は、Touma and Wisdom(1994)のモデルを仮定した。これらの結果を用いて 4 つの制御パラメータの時間変化を評価し、さらに Aubert et al. (2017) による Path 理論を用いて数値シミュレーションで使用できるパラメータも推定した。

本発表で示す結果は、CMB の熱流量が空間的に一様かつ単純な条件下での制御パラメータの標準的な変遷を示すものである。ここで構築した枠組みにより、たとえば CMB の熱流量が複雑に時間変化する場合や、熱伝導率などの物理量を変化させる場合にも対応できる。Olson et al. (2013) でも試みられているように、将来的には基盤となる制御パラメータの時間変化に加え、空間的に不均質な CMB の熱流量等の要素を取り入れた数値ダイナモシミュレーションを実施し、地球磁場の長期的な進化や逆転頻度を支配する物理的要因の解明を目指す。

## 引用論文:

Aubert, J. et al. (2017) J. Fluid Mech., 813, 558-593.

doi:10.1017/jfm.2016.789

Lister, J. R. (2003) Phys. Earth Planet. Int., 140(1-3), 145-158.

doi: 10.1016/j.pepi.2003.07.007

Landeau, M. et al. (2022) Nature Reviews Earth & Environment, 3(4), 255-269.

doi: 10.1038/s43017-022-00264-1

Olson, P. et al. (2013) Phys. Earth and Planet. Int., 214, 87-103.

doi: 10.1016/j.pepi.2012.10.003

Touma, J. & Wisdom, J. (1994) Astronomical J., 108(5), 1943-1961.

doi:10.1086/117209