ポスター1:11/25 AM1/AM2 (9:15-12:35)

ケルゲレン海台玄武岩から推定された白亜紀スーパークロンにおける弱い絶対古地 磁気強度:速報

#吉村 由多加 $^{1)}$, 藤井 昌和 $^{2,3)}$, 加藤 千恵 $^{4,5)}$, 石塚 治 $^{6,7)}$, 清水 健二 $^{8)}$, 大柳 良介 $^{7,9)}$ $^{(1}$ 九州大学, $^{(2)}$ 国立極地研究所 $^{(3)}$ 総合研究大学院大学, $^{(4)}$ 九州大学, $^{(5)}$ 九州大学 アジア埋蔵文化財研究センター, $^{(6)}$ 国立研究開発法人産業技術総合研究所, 地質調査総合センター, $^{(7)}$ 国立研究開発法人海洋研究開発機構, $^{(8)}$ 国立研究開発法人海洋研究開発機構 高知コア研究所, $^{(9)}$ 国士舘大学

A preliminary report of weak paleointensity during the Cretaceous Normal Superchron estimated from the Kerguelen plateau basalts

#Yutaka Yoshimura¹⁾, Masakazu FUJII^{2,3)}, Chie KATO^{4,5)}, Osamu Ishizuka^{6,7)}, Kenji Shimizu⁸⁾, Ryosuke Oyanagi^{7,9)}
⁽¹Kyushu University, ⁽²National Institute of Polar Research, ⁽³The Graduate University for Advanced Studies, SOKENDAI, ⁽⁴Kyushu University, ⁽⁵Kyushu University Advanced Asian Archaeological Research Center, ⁽⁶Geological Survey of Japan, AIST, ⁽⁷JAMSTEC, ⁽⁸Kochi Institute of Core Sample Research, JAMSTEC, ⁽⁹Kokushikan University

The absolute paleomagnetic field intensity (paleointensity) during the Cretaceous Normal Superchron (CNS) is a key constraint on the heat flow heterogeneity at the core - mantle boundary at that time. However, no consensus has been reached so far. Studies using plagioclase single crystals extracted from lava have reported strong paleointensity mean and small variations $(12.5 \pm 1.4 \times 10^{22})$ $\mathrm{Am^2}$; Tarduno et al., 2001, Science), whereas studies on submarine basaltic glass (8.1 \pm 4.3 Am²; Tauxe & Staudigel, 2004, G-Cubed) have reported large paleointensity variations. Furthermore, based on the absolute paleointensity of gabbros and temporal variations in oceanic crustal magnetization, Granot et al. (2007, EPSL) and Granot et al. (2012, Nature Geoscience) have pointed out that the range of paleointensity variation has temporal variation during the CNS. To clarify the variation in absolute paleointensity during the CNS, it is necessary to address issues such as determining absolute paleointensity from numerous lava flows, alteration during paleointensity experiments, and constraining the eruption duration of the lava flows. In this study, we used basalt core samples from the Kerguelen Plateau at Site 1137, located in the southern Indian Ocean to the Southern Ocean, drilled through the Ocean Drilling Program (ODP). We used a lava flow from the shallowest section of Site 1137 (Basement Unit 1). Initial thermomagnetic analyses showed that about half of the samples had Curie temperatures around 500 to 550 ° C and reversible thermomagnetic curves. This result suggests that roughly half of the Basement Unit 1 samples mainly contain Ti-poor titanomagnetite, which is less affected by low-temperature oxidation. Next, we applied the Tsunakawa - Shaw method to two specimens that showed reversible thermomagnetic curves and estimated two paleointensities of 24.0 μ T and 28.7 μ T. The former result showed an ideal behavior with almost no alteration of magnetic minerals before and after the first heating, as indicated by changes in ARM, and is therefore considered a more reliable paleointensity value. The latter result showed slight differences in ARM before and after the first heating. Converting the obtained absolute paleointensity values into virtual axial dipole moments (VADM) based on the reported paleolatitude (43.6 $^{\circ}$ S; Antretter et al., 2000, EPSL), we obtained values of 4.0 \times 10²² Am². These correspond to 32 - 38% of the VADM mean values estimated from plagioclase single crystals (Tarduno et al., 2001). Furthermore, because the Kerguelen Plateau and the Rajmahal Traps (Tarduno et al., 2001) are volcanoes that erupted close to each other, the difference is unlikely to be due to local field intensity variations. Therefore, the temporal variations of paleointensity during the CNS were likely large. Such large paleointensity fluctuations suggest that the thermal heterogeneity generating the CNS may have been similar to an increase in heat flux at both poles of the core mantle boundary (Glatzmaier et al., 1999, Nature) rather than a minimum in heat flux at the core - mantle boundary (Driscoll & Olson, 2011, GRL).

白亜紀スーパークロン中の絶対古地磁気強度は当時の核マントル境界の熱的な条件を制約する鍵であるが、いまだに統一見解が得られていない。溶岩中に含まれる斜長石単結晶を用いた研究では強い平均古地磁気強度と小さい変動(12.5 \pm 1.4 \times 10²² Am²、Tarduno et al., 2001, Science)、海底玄武岩ガラスを用いた研究では大きい変動(8.1 \pm 4.3 \times 10²² Am²、Tauxe & Staudigel, 2004, G-cubed)が報告されている。さらには、班れい岩の絶対古地磁気強度や海洋地殻磁化の時間変化から、強度の変動幅そのものが白亜紀スーパークロンにおいて時間変化しているという指摘もなされている(Granot et al., 2007, EPSL; Granot et al., 2012, Nature Geoscience)。白亜紀スーパークロン中の絶対古地磁気強度変動を明らかにするためには、多数の溶岩流からの絶対古地磁気強度度元、絶対古地磁気強度実験における変質、溶岩流の噴出期間の制約、などに対処する必要がある。そこで本研究では、国際深海掘削計画(ODP)Leg 183 で掘削されたケルゲレン海台の Site 1137 掘削コア試料を対象とした。本研究では、Site1137 の最も浅い位置の溶岩流(Basement Unit 1)を用いている。最初に熱磁気分析を行ったところ、キュリー温度は 500~550 度かつ可逆的な熱磁気曲線を示すものが半分程度含まれていた。この結果から、Basement Unit 1 サンプルの半数程度に、低温酸化の影響が少ない Ti に乏しいチタノマグネタイトが主に含まれていることが推定された。次に可逆的な熱磁気曲線を示した 2 つのスペシメンに対し、綱川ショー法を適用して絶対古地磁気強度推定を行った結果、それぞれ 24.0 microT、28.7 microT という古地磁気強度を復元することができた。前者は、1 回目の加熱前後の ARM の対応関係が 1:1 の直線とほぼ一致している。これは、加熱

で磁性鉱物に変質がほとんど発生しない理想的な挙動を示すため、信頼性の高い強度値だと言える。後者にはある程度の ARM 変化が見られたが、ARM 補正によって前者に近い強度値が得られたことになる。得られた絶対古地磁気強度を、既報の古緯度(43.6° S、Antretter et al., 2000, EPSL)を元に地心双極子モーメント(VADM)に変換すると、4.0 \times 10^{22} Am² と 4.8 \times 10^{22} Am² となった。これは、斜長石単結晶から推定された VADM 平均値(Tarduno et al., 2001)の 32~38% である。さらに、本研究のケルゲレン海台と Tarduno et al. (2001) のラジマハールトラップは地理的に近距離で噴出した火山体であるので、ローカルな地磁気強度の差ではないと思われる。そのため、白亜紀スーパークロン中の古地磁気強度の時間変化量は大きいと結論づけられそうである。大きく変動する古地磁気強度は、核マントル境界の熱フラックスの極小 (Driscoll & Olson,2011, GRL) よりも、核マントル境界の両極における熱フラックスの増加 (Glatzmaier et al., 1999, Nature) が白亜紀スーパークロンを発生させる熱的条件に近いことを示唆している。