ポスター1:11/25 AM1/AM2 (9:15-12:35)

磁気測定を用いた街路樹の環境汚染の評価手法開発

#佐久間 陸 $^{1)}$, 佐藤 雅彦 $^{1)}$

Development of an evaluation method for environmental pollution in street trees using magnetic measurements

#Riku Sakuma¹⁾, Masahiko SATO¹⁾
⁽¹Tokyo University of Science

As one of the major environmental issues, air pollution caused by automobile traffic poses a serious concern. Particulate matter (PM) generated from vehicle exhaust gases, wear of brake linings and tires, and resuspension of road dust can adversely affect both the natural environment and human health. Therefore, evaluating these pollutants is an important research objective. While environmental pollution is commonly evaluated through chemical analyses, such methods often face limitations—such as the inability to perform chemical measurements on certain samples, or insufficient data acquisition due to the financial and time costs associated with these analyses. In this study, we aimed to develop a simple, low-cost, and rapid method for evaluating environmental pollution by collecting bark from street trees and analyzing their magnetic properties.

Most magnetic minerals in the atmosphere are anthropogenic origin and contained in PM2.5, PM10, and suspended particulate matter^[1]. Measuring the magnetic parameters of plants and soils that have accumulated such particles enables pollution assessment. However, most previous studies^{[2]-[5]} have used magnetic susceptibility (χ) and intensity of saturation isothermal remanent magnetization (SIRM) as magnetic parameters, and very few have employed anhysteretic remanent magnetization (ARM), oblique ARM^[6] (OARM), and the results of stepwise alternating field demagnetization (AFD) for these remanences. This is mainly because magnetic signals from environmental samples are often weak, making ARM, OARM, and post-demagnetization measurements of these remanences difficult.

In this study, we collected tree bark samples of Acer buergerianum from street trees along roads with different traffic volumes in an urban area of Tokyo, Japan. After grinding and compressing the bark, the samples were packed into $7~\rm cm^3$ plastic cases, and the magnetic parameters such as χ , SIRM, ARM, OARM, and AFD of these remanences were measured. Our results demonstrated that bark from street trees can be used to efficiently assess areas where pollutants accumulate, and that various magnetic parameters can be reliably measured. Based on these results, we will compare the magnetic parameters among sampling sites and will discuss the potential of magnetic measurements as a practical tool for environmental pollution assessment.

References

[1] Chaparro et al. 2010, [2] Marié et al. 2020, [3] Préndez et al. 2023, [4] Mejía-Echeverry et al. 2018, [5] Chaparro et al. 2020, [6] Sato et al. 2017

環境問題の一つとして、自動車の交通による環境汚染がある。自動車の排気ガスやブレーキライニングとタイヤの摩耗、道路粉塵の浮遊などによる粒子状物質 (PM) は自然環境や人間の健康に影響を及ぼすため、これらを評価することは重要な研究課題である。環境汚染の評価は、主として化学分析を用いて行われているが、試料によっては、化学測定が不可能な場合、化学分析に必要な予算的・時間的コストのため十分なデータ量を確保できない場合、などの問題にしばしば直面する。本研究では、街路樹の樹皮を採取し、磁気測定を行うことで、簡易かつ低コスト・迅速な環境汚染評価手法の開発に取り組んだ。

大気中の磁性鉱物の多くは人為起源であり、PM2.5、PM10、浮遊粒子状物質などに含まれている $^{[1]}$ 。これらの物質が付着・蓄積した植物や土壌の磁気パラメータを測定することで、環境汚染を評価することができる。また、先行研究の多く $^{[2]-[5]}$ は磁気パラメータとして帯磁率や飽和等温残留磁化の強度を用いており、非履歴性残留磁化や斜交非履歴性残留磁化 $^{[6]}$ 、および、それらの段階交流消磁結果を用いた研究例はほとんどない。これは、サンプルの磁気的なシグナルが弱いため非履歴性残留磁化や斜交非履歴性残留磁化、および、それらの段階交流消後の磁化測定が難しいことが主たる理由として挙げられる。

そこで本研究では、新たな環境汚染評価手法の開発を目指して、東京都の都市部において、自動車交通量の異なる道路沿いの街路樹(トウカエデ)の樹皮を採取し、それらの磁気測定を行った。採取した樹皮を粉砕・圧縮後に 7cm³ のプラスチックケースに詰め、帯磁率、飽和等温残留磁化、非履歴性残留磁化、斜交非履歴性残留磁化、および、それらの段階交流消磁測定を実施した。測定の結果、街路樹の樹皮を用いることで、汚染物質が濃集している部分を効率的に評価することが可能となり、各種磁気パラメータが測定可能であることが確認された。本発表では、これらの結果を元に各地点の磁気パラメータの比較を行い、磁気測定による環境汚染評価の有用性について議論する。