R005-10

A 会場 : 11/26 PM3(16:40-18:25)

17:40~17:55:00

## 地上磁場データを用いた台風がもたらす大気圏・電離圏結合擾乱の定量的解析

#西村 美紀 1), 吉川 顕正 2), 魚住 禎司 3)

(1 九大理学府, (2 九大/理学研究院, (3 九州大学国際宇宙惑星環境研究センター

## **Quantitative Analysis of Typhoon-Induced Atmosphere – Ionosphere Coupling** from Ground Magnetic Data

#Miki Nishimura<sup>1)</sup>, Akimasa YOSHIKAWA<sup>2)</sup>, Teiji UOZUMI<sup>3)</sup>

<sup>(1</sup>Department of Earth and Planetary Sciences, Graduate School of Science, Kyushu University, <sup>(2</sup>Department of Earth and Planetary Sciences, Kyushu University, <sup>(3</sup>International Research Center for Space and Planetary Environmental Science, Kyushu University

In recent years, it has become increasingly evident that intense convective activities, including typhoons, have significant effects on the ionosphere. For example, neutral winds associated with gravity waves generated in the troposphere have been pointed out to drive dynamo currents in limited regions of the ionospheric E layer at altitudes of 90 – 150 km (Nakanishi et al., 2014). Previous studies have reported that magnetic field variations caused by small-scale field-aligned currents generated through this ionospheric dynamo process have been observed (V. A. Martines-Vedenko et al., 2019; Aoyama et al., 2017). These studies have provided important insights into the coupling processes between the atmosphere and the ionosphere.

As for ground-based observations, Chen et al.,(2014) analyzed geomagnetic disturbances in Taiwan associated with typhoons. Their analysis targeted nighttime data from September 1 to 30, 2008, during which three typhoons approached or made landfall in Taiwan. They reported that, for all three typhoons, clear amplitude inconsistencies were repeatedly observed in the 2.5 – 7 mHz frequency band on the days of their closest approach. This result suggests that convective activities associated with typhoons may contribute to geomagnetic variations via the ionosphere.

However, several issues remain in previous studies. First, the analysis of Chen et al.,(2014) was limited to nighttime, and results for the daytime, when the ionospheric E layer is present, have not been sufficiently demonstrated. Since the daytime ionosphere has higher conductivity and the characteristics of disturbances may differ greatly from those at night, and clarifying this aspect is essential. Second, satellite observations are only possible when the timing of a typhoon coincides with the satellite's overpass, making it difficult to secure a sufficient number of events for statistical analysis. Third, compared to space weather phenomena such as geomagnetic storms, geomagnetic variations caused by typhoons are considered to be small, and their detection and quantification are difficult.

Based on this background, the present study aims to verify whether variations in ionospheric currents caused by electron density fluctuations associated with typhoon passages can be detected as geomagnetic variations on the ground, using multipoint geomagnetic observation data in Japan. By utilizing data from both the MAGDAS (Magnetic Data Acquisition System) ground magnetometer network, globally deployed by International Research Center for Space and Planetary

Environmental Science, Kyushu University, and the geomagnetic observatories operated by the Japan Meteorological Agency, continuous and wide-area analyses can be performed. This enables statistical analyses of a larger number of events compared to satellite observations, with the goal of clarifying, from an electromagnetic perspective, the mechanisms of atmosphere – ionosphere coupling disturbances induced by typhoons through the detection of small ground geomagnetic variations.

The data used in this study cover the period from 2009 to 2021, focusing mainly on August to October of each year. Frequency analyses are being conducted for approximately 75 typhoons that approached or made landfall on the Japanese archipelago during this period (currently ongoing). For these 75 events, multi-point observation data from about six to seven sites, including both MAGDAS and Japan Meteorological Agency geomagnetic observatories distributed from Hokkaido to Kyushu, are available. Specifically, the analysis investigates in which frequency bands geomagnetic disturbances occur, dividing the data into daytime and nighttime intervals. To examine local geomagnetic variations with the influence of space weather removed, correlation coefficients between two observatories—for example, Kuju (Oita Prefecture) and Kakioka (Ibaraki Prefecture)—are calculated separately for day and night. For data where correlation coefficients decrease, it is examined whether the timing corresponds to periods before or after typhoon passages. If so, detailed investigations are conducted into electron density variations in the ionospheric F layer using total electron content (TEC) data. In addition, water vapor data observed by the Himawari meteorological satellite are also incorporated to analyze atmospheric conditions.

In this presentation, the results of the above analyses will be shown, and the generation mechanisms of ground geomagnetic variations induced by typhoons will be discussed.

近年、台風を含む激しい対流活動が電離圏に影響を及ぼすことが明らかになりつつある。例えば、対流圏から発生する重力波に伴う中性風は高度 90~150km の電離圏 E 層内の限られた領域でダイナモ電流を駆動することが指摘されている (Nakanishi et al., 2014)。過去の研究から、この電離圏ダイナモ過程を通じて生成された小規模な沿磁力線電流による磁場変動が観測されている (V. A. Martines-Vedenko et al., 2019; Aoyama et al., 2017)。これらの研究は、大気圏と電離圏

の結合過程を理解する上で重要な知見を提供してきた。

地上観測に基づく研究としては、Chen et al.,(2014) が台風に伴う台湾の地磁気擾乱を解析している。解析対象は 2008 年 9 月 1 日から 30 日までの夜間データであり、この期間には 3 つの台風が台湾に接近もしくは上陸した。彼らは 3 つの台風すべてにおいて、最接近日に 2.5 – 7mHz の周波数帯域で振幅に顕著な不一致が繰り返し観測されたと報告している。このことは、台風に伴う対流活動が電離圏を介して地磁気変動に寄与する可能性を示唆している。

しかしながら、先行研究にはいくつかの課題が残されている。第一に、Chen et al.,(2014) の解析は夜間に限定されており、電離圏 E 層が存在する昼間における結果は十分に示されていない。昼間の電離圏は電気伝導度が高く、擾乱の特徴が夜間とは大きく異なる可能性があるため、その解明は不可欠である。第二に、人工衛星観測は台風と衛星の通過タイミングが一致した場合に限られるため、統計的に十分なイベント数を確保することが困難である。第三に、磁気嵐などの宇宙天気現象と比較すると、台風に起因する地上磁場変動は微小であると考えられ、その検出および定量化は容易ではない。

以上の背景を踏まえ、本研究は日本における地上磁場の多点観測データを用いて、台風通過前後に伴う電子密度変動に起因する電離圏電流の変化が地上磁場変動として検出可能であるかを検証する。九州大学国際宇宙惑星環境研究センターがグローバルに展開している地上磁場観測網 MAGDAS (Magnetic Data Acquisition System) および気象庁地磁気観測所のデータを利用することで、連続的かつ広域的な解析が可能となる。これにより、人工衛星観測に比べ多数のイベントを対象とした統計解析が実現でき、微小な地上磁場変動を通じて台風起因の大気圏・電離圏結合擾乱の機構を電磁気学的側面から明らかにすることを目指す。

使用データは、2009 年から 2021 年の各年において概ね8月から10月までのものを用いる。この期間に日本列島に接近もしくは上陸した約75個の台風に対して周波数解析を行う(現在進行中)。この75イベントに対しては、MAGDASと気象庁地磁気観測所併せて北海道から九州地方までの6から7箇所ほどの多点観測データを利用することができる。具体的には、どの周波数帯で地磁気援乱が発生するのかを昼と夜の時間帯に分けて調査する。宇宙天気の影響を取り除いたローカルな地磁気変動を調べるために、例えば久住(大分県)と柿岡(茨城県)といった2観測点において、昼と夜それぞれの相関係数を算出する。相関係数の低下が見られたデータについて、それが台風通過前後の時期に対応するかどうかを検証し、該当する場合は電離圏 F層における電子密度変動を、全電子量データを用いて詳しく調査する。さらに、気象衛星ひまわりによる水蒸気量データを併用し、大気側の条件も解析する。

本講演では、以上の解析結果を示し、台風起因の地上磁場変動の発生機構について議論を行う。