ポスター2:11/25 PM1 (13:45-15:45)

熱圏ヘリウムの変動解明に向けた近赤外レーザーヘテロダイン分光器の開発#會田陽貴 $^{1)}$,中川 広務 $^{2)}$,西山尚典 $^{3)}$,津田卓雄 $^{4)}$,斎藤徳人 $^{5)}$,村田功 $^{6)}$,寺田直樹 $^{6)}$,笠羽康正 $^{6)}$ (1東北大学, $^{(2)}$ 東北大学, $^{(3)}$ 国立極地研究所, $^{(4)}$ 電気通信大学, $^{(5)}$ 理化学研究所, $^{(6)}$ 東北大学

Development of a near-infrared laser heterodyne spectrometer for metastable helium emission observation in the thermosphere

#Haruki Aida¹⁾, Hiromu NAKAGAWA²⁾, Takanori NISHIYAMA³⁾, Takuo TSUDA⁴⁾, Norihito SAITO⁵⁾, Isao MURATA⁶⁾, Naoki TERADA⁶⁾, Yasumasa KASABA⁶⁾

⁽¹Tohoku University, ⁽²Tohoku University, ⁽³National Institute of Polar Research, ⁽⁴The University of Electronic-Communications, ⁽⁵RIKEN, ⁽⁶Tohoku University

The Earth's upper thermosphere (300-500 km altitudes) is located at the boundary between space and the Earth's atmosphere. This region exhibits a complex region of interaction, affected by both space and the lower atmosphere. Since the upper atmosphere is a reservoir of escaping atmosphere to space, thermospheric variations are essential for understanding the atmospheric escape and the evolution of planetary atmospheres. Recently, optical observations of 1083 nm emission lines of metastable He in the upper thermosphere have revealed that the lower atmosphere can significantly affect the thermosphere, as faster than expected even during moderate geomagnetic storm events (Nishiyama et al., 2024). Meanwhile, ground-based observational tools are limited, and in particular, there are no continuous observations of wind speeds and temperature fields. On the other hand, in recent years, there have been remarkable developments in the observation of exoplanets, and metastable He emission lines have been detected in multiple exoplanets (Spake et al., 2018; Krishnamurthy et al., 2024). It is attracting attention as an indicator of atmospheric escape, and there is a desire to gain a universal understanding of its spatiotemporal variations and differences in behavior between planets.

Metastable He is produced by the impact of electrons on grand state He and by recombination of He ions precipitating as solar wind particles. It has a long lifetime of 7,800 seconds and limited photochemical reactions, making it a useful tracer in the thermosphere. However, the 1083 nm emission lines are difficult to separate from the OH emission lines due to their of about 0.1 nm proximity with conventional spectrometers, so observing He density still has difficulties. The purpose of this study is to develop a new near-infrared laser heterodyne spectrometer to improve the wavelength resolution by three orders of magnitude or more (up to 10^7) compared to conventional methods and to isolate the He emission line from the OH emission lines. In addition, we aim to derive wind velocity and temperature fields directly from the Doppler shift and Doppler width, respectively by resolving the He emission line profile for the first time through ultra-high wavelength-resolution observations. The developed device will be installed in our unique polar observation network and the Hawaii Telescope, enabling observations of metastable helium not only on Earth but also on Mars and Venus, thereby contributing to the elucidation of its variations. According to the previous study by Dynamics Explorer 2 and other thermospheric observation satellites, which reported the typical vertical wind speeds in the upper thermosphere of up to 100 m/s, mostly within 30 m/s, the required accuracy of observing vertical wind speed is 30 m/s.

Infrared laser heterodyne spectroscopy is a method of superimposing an infrared light from an observation target with a laser source as the local oscillator (LO) that causes the intermediate frequency component in the radio wavelength. The background radio spectrometer can achieve a wavelength resolution of 10⁷ or better for the 1083 nm signal.

In this study, based on the results of evaluation tests of laser characteristics necessary for He emission line observation and heterodyne signal detection tests between laser beams, we will show the status of our consideration of optical systems using halogen lamps.

In the LO characterization test, the wavelength tunable range of the laser, and the wavelength stability, which determines the wavelength resolution, were evaluated. As a result, the wavelength tunable range of the laser was 1082.907-1083.806 nm, which sufficiently covers the target He emission lines (emission line positions: 1082.908 nm, 1083.025 nm, 1083.034 nm) and OH emission lines (emission line positions: 1082.918 nm, 1082.933 nm, 1083. 123 nm, 1083.139 nm). The wavelength stability was found to have a standard deviation of 2.6×10^{-5} nm (95.45 % within 0.106 pm) over a 10-minutes integration time. This implies the wavelength resolution of the instrument is approximately 10⁷. This result demonstrates that the spectral resolution is sufficient for isolating the He emission line from OH emission lines. The expected accuracy of the wind speed derivation is about 40 m/s, which is comparable to the expected wind speed from previous satellite observations. Further improvement can be expected by further wavelength stabilization through feedback using a gas cell.

In the laser vs. laser heterodyne signal detection test, we verified the feasibility of detecting heterodyne signals using optical fiber technology as a principle test towards the detection of heterodyne signals between atmospheric light or light of halogen lamps introduced using an optical system and lasers.

The results of this study have raised an outlook for laser heterodyne spectroscopy observations of He alone, separated from OH emission lines. As a next step, continuous observation from the ground will be realized in cooperation with conventional spectroscopy, to elucidate the dynamics of the upper atmosphere of planets.

地球の上部熱圏(高度 300~500 km)は、宇宙空間と地球大気圏との境界に位置し、宇宙と下層大気、双方からの影響が複雑に絡み合う相互作用領域である。この領域は、宇宙へ消失する大気のリザーバであるため、熱圏変動過程の理解は、惑星大気の流出と進化の解明において重要である。近年では、上部熱圏に分布する準安定 He の 1083 nm 輝線の光学観測により、中規模の磁気嵐においても加熱されて膨張した下層大気によって予想以上の速度で熱圏に影響を及ぼし得ることが明らかになった(Nishiyama et al., 2024)。一方で、地上からの観測手段は限られており、特に風速や温度場の継続的な観測は皆無である。また、近年発展が目覚ましい系外惑星の観測において、準安定 He の輝線が複数検出された(Spake et al., 2018; Krishnamurthy et al., 2024)。これは大気流出の指標として注目を集めており、その時空間変動や惑星ごとの振る舞いの違いを普遍的に理解することが望まれている。

準安定 He は、電子衝突や太陽風粒子として降り込む He イオンの再結合によって生成される。寿命が 7800 秒と長く、光化学反応も限られているため、熱圏のトレーサーとして有用である。しかし、1083 nm 輝線は、OH 輝線と波長差およそ 0.1 nm で近接しているため従来の分光器では分離が困難であり、He 密度の定量的な観測が困難であった。本研究の目的は、近赤外レーザーへテロダイン分光法を新たに開発することで、従来法に比べて波長分解能を 3 桁以上改善し、OH 輝線と分離した He 観測を実現することである。また、波長分解能 10⁷ 級の超高波長分解能観測により He 輝線プロファイルを分解することで、世界で初めてドップラーシフトとドップラー幅の両方から直接的に風速と温度場を導出することを企図する。開発した装置は、独自の極域観測網ならびにハワイ望遠鏡に実装し、地球のみならず火星や金星の準安定 He 観測を実現することで、その変動解明に資する。衛星観測(Dynamics Explorer 2 など)によると、上部熱圏の鉛直風速は最大で 100 m/s、大部分が 30 m/s 以内と報告されており、鉛直方向の風速の観測には 30 m/s の精度が必要である。

赤外レーザーへテロダイン分光法は、観測対象からの赤外光と局発赤外光(Local Oscillator)の光を重ね合わせ、その周波数の差となる中間周波数成分を信号として電波分光する手法であり、 $1083~\mathrm{nm}$ において $10^7~\mathrm{以}$ 上の波長分解能を得ることができる。

本研究では、He 輝線観測に必要となるレーザーの特性評価試験およびレーザー光同士のヘテロダイン信号検出試験の結果を踏まえ、ハロゲンランプを用いた光学系導入部の検討状況を示す。

レーザー特性評価試験では、観測波長を決定する半導体レーザーの波長可変範囲、波長分解能を決定する波長安定度を測定した。その結果、レーザーの波長可変範囲は $1082.907 \sim 1083.806$ nm であり、ターゲットとなる He 輝線(輝線位置:1082.908 nm, 1083.025 nm, 1083.034 nm) と OH 輝線(輝線位置:1082.918 nm, 1082.933 nm, 1083.123 nm, 1083.139 nm) を十分カバーできることが分かった。また、レーザーの波長安定度は、10 分間の測定で標準偏差 2.6×10^{-5} nm (95.45% が 0.106 pm 内)であることが分かった。装置の波長分解能は、レーザーの波長安定度で制約を受けるが、およそ 10^7 に相当することがわかり、OH 輝線との分離には十分な性能であることが実証された。期待される風速導出精度は、およそ 40 m/s であり、これは先行衛星観測から期待される風速と同程度である。ガスセルを用いたフィードバックによるさらなる波長安定化などで改善が見込める。

レーザー光同士のヘテロダイン信号検出試験では、光学系を用いて導入する大気光やハロゲンランプ光とレーザーとの ヘテロダイン信号の検出を検証する原理試験として、ファイバーやファイバーカプラー、検出器を用いた構成のヘテロダ イン信号の検出可能性を検証した。その結果、ヘテロダイン信号を確認することができた。

本研究の成果により、OH 輝線と分離した He 単独のレーザーへテロダイン分光観測に向けた見通しが立った。今後は、従来分光法と連携して地上からの継続的な観測を実現し、惑星超高層大気の動態解明に貢献する。