ポスター2:11/25 PM1(13:45-15:45)

超稠密 GNSS 受信機網を用いた磁気嵐時の中緯度電離圏変動の研究

#古川 周良 $^{1)}$, 細川 敬祐 $^{1)}$ 電気通信大学

Study of mid-latitude ionospheric variations during geomagnetic storms using an ultra-dense GNSS receiver network

#Chikara Furukawa¹⁾, Keisuke HOSOKAWA¹⁾
⁽¹The University of Electro-Communications

At altitudes of 60-500 km above the Earth's surface, there exists a region called the ionosphere, where the atmosphere is ionized by ultraviolet rays from the sun. This region is constantly changing in response to the influx of energy from above and below. In particular, traveling ionospheric disturbance (TID) is one of the ionospheric disturbance phenomena that causes errors in satellite positioning. TIDs are classified into several categories based on their time-spacial scale. Medium-scale TIDs (MSTIDs) have periods of 15 minutes to 1 hour and wavelengths of about 200 km, while large-scale TIDs (LSTIDs) have periods of 30 minutes to 3 hours and wavelengths of 1,000 km or more. Both are primarily driven by atmospheric gravity waves (AGWs), which are restoring forces generated by atmospheric buoyancy. However, large-scale AGWs are generally caused by explosive phenomena on the solar surface, such as solar flares and coronal mass ejections (CMEs), and therefore solar activity and LSTIDs tend to be discussed together. Large-scale AGWs that drive LSTIDs tend to be generated by high-energy solar wind. Energy enters from the point where the magnetic field of the solar wind (IMF) and the magnetic field of the Earth's cancel each other out, and accumulates in the plasma sheet in the magnetotail. When this energy is released, particle precipitation into the polar regions and increased Joule heating cause an increase in the polar electric field, generating AGWs. The propagation direction of TID has been determined through statistical analysis of observation reports, and there is currently no theory to determine the propagation direction.

On October 10, 2024, during the solar maximum, a large-scale solar flare, the largest in magnitude in X-rays, and an accompanying geomagnetic storm were observed. On the same day, auroras, which are usually observed at high latitudes, were observed in mid-latitude Japan (Hokkaido), and the LSTID was observed moving south over Japan. To date, there have been many observational reports and theoretical studies on LSTIDs, but no observational reports have been made on a massive LSTID comparable to the event focused on in this study. Therefore, we analyze the propagation characteristics of LSTIDs at mid-latitudes by visualizing the variations in electron density over Japan using dense GNSS-TEC for the LSTIDs that occurred from October 10 to October 12, 2024.

地上から高度 60-500 km では電離圏と呼ばれる大気が太陽からの紫外線放射によって電離した領域が存在しており、その上方・下方からのエネルギー流入に応答する形で絶えず変動している。特に、電離圏電子密度の変動が高緯度から低緯度にかけて伝搬する現象である伝搬性電離圏擾乱 (Traveling Ionospheric Disturbance: TID) は電離圏変動現象の一つであり、衛星測位に誤差をもたらす原因の一つである。TID はその時空間スケールによっていくつかに分類される。周期 15 分 -1 時間で、波長が 200 km 程度のものを中規模 TID (Medium-Scale TID: MSTID) と呼び、周期 30 分 -3 時間、波長が 1,000 km 以上のものを大規模 TID (Large-Scale TID: LSTID) と呼ぶ。いずれも、大気の浮力を復元力とする大気重力波 (Atmospheric Gravity Wave: AGW) が主な駆動源ではあるが、大規模な AGW は一般的に、太陽フレアやコロナ質量放出 (CME) のような太陽表面での爆発現象に起因するため、太陽活動と LSTID は同時に議論される傾向にある。LSTID を駆動するような大規模な AGW の生成プロセスとしては、地球に到来した高エネルギー太陽風が、自身の磁場 (IMF) と地球磁気圏の磁場が打ち消す箇所から侵入し、磁気圏尾部のプラズマシートにエネルギーを蓄積する。それが解放されることによる極域への粒子降下やジュール加熱の増大による極域電場の増大に起因して生成される。また、これら TID の伝搬方向は観測報告からの統計的解析により明らかになったものであり、伝搬方向を定める決定論的メカニズムは現状存在しない。

2024 年 10 月 10 日, 太陽活動の極大期に伴い, X線による太陽フレア等級において最大クラスの大規模な太陽フレアとそれに伴う磁気嵐が観測された. 同日, 通常高緯度で観測されるオーロラが中緯度の日本 (北海道) で観測され、それに伴い, LSTID が日本上空を南下していく様子が確認された. これまで, LSTID に関して観測報告, 理論研究が盛んに行われてきたが, 本研究で注目しているイベントに匹敵する巨大な LSTID に関する観測報告は今まで行われていない. そこで, 2024 年 10 月 10 日から 10 月 12 日にかけて発生した LSTID について, 超稠密 GNSS—TEC を用いて日本上空の電子密度の時間変動を可視化することで, 中緯度における LSTID の伝搬特性を解析する.