R005-P29

ポスター2:11/25 PM1 (13:45-15:45)

高機能超小型衛星による温暖化ガス観測の戦略

#高橋 幸弘 ¹⁾, 杉山 玄己 ¹⁾
⁽¹ 北大

Strategy for greenhouse gas observation using high-performance micro-satellite #YUKIHIRO TAKAHASHI¹⁾, HARUKI SUGIYAMA¹⁾

(1 Hokkaido University

Methane is an important greenhouse gas on par with carbon dioxide, and in recent years, attention has been focused on its impact from industrial equipment in addition to cattle and rice paddies. Satellite-based methane observations have utilized techniques such as GOSAT, which measure high-precision spectra across a wide wavelength range at relatively low ground resolution. There is a growing effort to detect localized phenomena such as gas leaks using methods like the Canadian GHG Sat, which can identify high-density methane emission sources with higher spatial resolution. The latter can be achieved with relatively simple observation devices, making it feasible even for ultra-small satellites weighing less than 10 kg. Our group at Hokkaido University, in collaboration with Tohoku University, has achieved world-leading performance in multi-wavelength spectroscopic imaging with high spatial resolution (up to approximately 4 m) using a liquid crystal filter with a wavelength resolution of 10 nm. To distinguish methane and carbon dioxide absorption lines from other absorption lines, including those of water vapor, a wavelength resolution of 0.4 nm or higher is required. Here, we apply the observation method used for aurora bright lines. Additionally, to ensure sufficient light intensity, it is necessary to precisely control the satellite attitude and achieve pointing accuracy within the spatial resolution of the imaging device. Our research group is exploring strategies for high-sensitivity greenhouse gas observation with spatial resolution of several tens of meters on the ground, and this presentation will introduce the latest progress.

メタンは二酸化炭素に並ぶ温暖化ガスとして重要であり、近年は牛や水田に加え、工業的設備からのガス漏れの影響も注目されている。衛星によるメタンの観測は、GOSATに代表されるような、比較的低い地上解像度で広い波長域のスペクトルを高精度で測定する手法が利用されてきた。加えて、ガス漏れのような局所的な現象を検知するための、カナダGHG Sat のような、より高い空間分解能で高密度のメタン放出元を特定する動きがある。後者は比較的簡便な観測装置で可能なため、数 10kg 以下の超小型衛星でも十分観測が可能である。私たち北海道大学のグループは東北大学とともに、液晶フィルターを用いた 10nm オーダーの波長分解能での高空間解像度(最高約 4m)をもつ多波長分光撮像で世界随一の実績がある。メタンや二酸化炭素の吸収線を、水蒸気を含む他の吸収線と区別するためには、0.4nm 以上の波長分解能が必要になるが、ここではオーロラ輝線の観測方法を応用する。また、十分な光量を確保するために、衛星姿勢を高精度で制御し、撮像装置の空間分解能程度の視野の指向性を達成することも必要になる。本研究グループでは、地上で数10m という高い空間解像度を持つ、高感度温暖化ガス観測の戦略を検討しており、本講演ではその最新の進捗状況を紹介する。