R006-05

B 会場 : 11/26 PM2(14:50-16:20)

15:50~16:05:00

あらせ衛星の PWE/EFD を用いた衛星帯電と光電子がつくる擬似電場の推定

#今野 翼 $^{1)}$, 中川 朋子 $^{2)}$, 堀 智昭 $^{3)}$, 笠羽 康正 $^{4)}$, 松田 昇也 $^{5)}$, 笠原 禎也 $^{5)}$, 三好 由純 $^{6)}$, 土屋 史紀 $^{4)}$, 熊本 篤志 $^{4)}$, 新堀 淳樹 $^{6)}$, 松岡 彩子 $^{7)}$

 $^{(1)}$ 東北工業大学, $^{(2)}$ 東北工業大学, $^{(3)}$ 名古屋大学・宇宙地球環境研究所, $^{(4)}$ 東北大学, $^{(5)}$ 金沢大学, $^{(6)}$ 名古屋大学, $^{(7)}$ 京都大学

Estimation of a spurious electric field arising from spacecraft charging and photoelectron cloud using PWE/EFD onboard ARASE

#Tsubasa Konno¹⁾, Tomoko NAKAGAWA²⁾, Tomoaki HORI³⁾, Yasumasa KASABA⁴⁾, Shoya MATSUDA⁵⁾, Yoshiya KASAHARA⁵⁾, Yoshizumi MIYOSHI⁶⁾, Fuminori TSUCHIYA⁴⁾, Atsushi KUMAMOTO⁴⁾, Atsuki SHINBORI⁶⁾, Ayako MATSUOKA⁷⁾

⁽¹Tohoku Institute of Technology, ⁽²Tohoku Institute of Technology, ⁽³Institute for Space-Earth Environmental Research, Nagoya University, ⁽⁴Tohoku University, ⁽⁵Kanazawa University, ⁽⁶Nagoya University, ⁽⁷Kyoto University)</sup>

The most commonly used spaceborne technique for electric field measurement is the double probe method, which measures the potential difference between a pair of identical probes extending from the spacecraft. The potential of a sunlit probe in a tenuous plasma becomes positive due to the balance of photoelectron current and the ambient electron current. A bias current applied to the probe reduces its potential to be lower than that of the spacecraft potential. In a tenuous plasma, the electric field measurement using double probes can suffer from a spurious sunward electric field due to photoelectrons emitted from the spacecraft and the positive charging of the spacecraft body. The photoelectrons are emitted from the sunlit side of the spacecraft. The resultant pair of charges localized on the sunlit side induce a dipole-like electric field pointing sunward. This local electric field is registered as a sinusoidal curve of the potential difference between the two probes as a function of the phase of the satellite's spin motion. Imbalance of the sheath potentials between the two probes can also be detected as a sunward spurious field. The sunward-side probe collects more photoelectrons emitted from the spacecraft, decreasing the probe potential, while the anti-sunward probe loses more escaping photoelectrons due to the positively charged spacecraft body, increasing the probe potential.

For a precise analysis of the ambient (natural) electric field, it is desirable to estimate the spurious electric field and then subtract it from a measured electric field. In this study, an attempt is made to estimate the spurious electric field from the potential difference obtained by Plasma Wave Experiment (PWE) / Electric Field Detector (EFD) onboard the Arase satellite. Our estimation of the spurious electric field was based on the following assumptions: 1) an observed electric field is a sum of natural and spurious fields, 2) the natural electric field is perpendicular to the background magnetic field, and 3) the spurious electric field points sunward. For selected cases in which the background magnetic field was parallel to the spin plane, we estimated the x-component (sunward in the spin plane) of the spurious electric field.

Monthly statistics starting from April 2017 to March 2024 revealed the presence of the spurious electric field during periods in which the electron density was less than $100~\rm cm^{-3}$. A linear relationship is identified between the x-component of the spurious electric field and the log of electron density ($\log n_e$) in the range $10 < n_e < 100~\rm cm^{-3}$ in 2/3 of the months in which the estimation was available. Using the linear relationship, the spurious electric field was estimated as a function of the electron density. In some cases, the x-component of the spurious electric field followed that of the observed electric field. Subtraction of the spurious component from the observation improved the ratio of the sunward component with respect to the magnitude of the electric field. In some other cases, however, the estimation was not successful and over-subtraction occurred. We investigated a possibility that the spurious electric field deviated from the sun direction due to the photoelectron cloud guided by the background magnetic field, but there was no clear correlation found between the over-subtraction and the direction of the background magnetic field.

The relationship between the spurious electric field and $\log n_e$ disappeared in 2018-2020. The fitting parameters of the regression line were examined to see if there is any correlation with F10.7 intensity as an indicator of the solar UV, but the reason for the loss of the linear relation in 2018-2020 is not yet understood.

衛星による電場観測にて多く用いられるダブルプローブ法では、衛星から伸展させた一対のプローブ間の電位差を計測する。日照中でのプラズマ中にある衛星の電位は、周辺プラズマからの流入電子電流と衛星からの流出光電子電流とのつり合いで決まり、前者が少ない低密度域では正に定まる。プローブに電子を注入するバイアス電流を供給すると、プローブの電位はよりプラズマ電位に近く安定するため、2つのプローブの電位差は宇宙空間の電場を反映することになる。

この方法で計測された電場は、電子密度の低いときに太陽方向の成分が強まる問題がある。これは自然電場と考えにくく、計測によって生じた人工的な擬似電場と考えられる。その原因として、衛星からの光電子雲と正の衛星帯電が考えられている。光電子雲は衛星から太陽方向に偏って放出され、衛星帯電の中心も衛星表面が等電位になるようスピン軸から

太陽方向にずれると予想される。その結果生じる双極子電場はプローブ間の電位差波形に正弦波をつくり、太陽方向の擬似電場として検出される。もう一つの原因として、太陽方向のプローブでは光電子雲からの電子電流によって電位が下がり、反対側のプローブでは日照側から放出された光電子が逃走するためのポテンシャル障壁が衛星のつくる電位のために下がり、正味の光電子電流が増加するためプローブ電位が上がる結果、 プローブのシース電位の違いが太陽方向の電位差として検出されることも考えられる。

これらの影響を排した電場解析のためには、擬似成分を推定して観測値から差し引くことが求められる。本研究では、あらせ衛星のプラズマ波動・電場観測器 (Plasma Wave Experiment / Electric Field Detector, PWE/EFD) のデータから擬似電場の推定を試みる。ここで、観測される電場は自然の成分と擬似成分からなり、自然電場は外部磁場と直交し、擬似電場は太陽方向を指すと仮定する。これらを踏まえると、外部磁場が衛星のスピン面と平行の場合には、擬似電場の太陽方向成分が推定できる。2017 年 4 月から 2024 年 3 月までのデータを 1 か月ごとに調査したところ、電子密度 100 cm⁻³ 以下で擬似電場の発生が確認された。なお、この電子密度は PWE/HFA によって UHR 周波数から求められたものである。推定ができた月のうち 2/3 は、電子密度が 10 cm⁻³ - 100 cm⁻³ の範囲で電子密度の対数と擬似電場の間に線形性がみられた。線形回帰式から擬似電場を電子密度の関数として試算したところ、観測された電場の太陽方向成分に近い値となる場合もあった。試算した擬似成分を観測電場から差し引くと、太陽向き成分の卓越が改善された。しかしこれはいつもうまくいくわけではなく、過剰に差し引いてしまう場合もあった。光電子雲が背景磁場にガイドされて擬似電場が太陽方向を指さない可能性を考えたが、背景磁場の方向と電場の差し引き結果に関連性はなかった。

擬似電場の推定値と電子密度の対数との間に線形性がみられないケースは 2018 年 - 2020 年に集中していた。太陽紫外線と比較したものの、原因はわかっていない。