R006-10

B 会場 : 11/26 PM3(16:40-18:25)

17:25~17:40:00

サブオーロラ帯の高感度大気光カメラで観測される波長 557.7 nm の弱いディフューズ発光領域のあらせ衛星との共役観測:複数例解析

#五味 優輝 $^{1)}$, 塩川 和夫 $^{1)}$, 三好 由純 $^{1)}$, 大塚 雄一 $^{1)}$, 大山 伸一郎 $^{1)}$, Connors Martin $^{2)}$, 新堀 淳樹 $^{1)}$, 堀 智昭 $^{1)}$, Jun ChaeWoo $^{1)}$, 山本 和弘 $^{1)}$, 篠原 育 $^{3)}$, 浅村 和史 $^{3)}$, 笠原 慧 $^{4)}$, 桂華 邦裕 $^{4)}$, 横田 勝一郎 $^{5)}$, 土屋 史紀 $^{6)}$, 熊本 篤志 $^{6)}$, 笠原 禎也 $^{7)}$, 風間 洋一 $^{8)}$, Wang Shiang-Yu $^{8)}$, Tam Sunny W.Y. $^{9)}$, 松岡 彩子 $^{10)}$

 $^{(1)}$ 名古屋大学, $^{(2)}$ アサバスカ大学, $^{(3)}$ 宇宙航空研究開発機構, $^{(4)}$ 東京大学, $^{(5)}$ 大阪大学, $^{(6)}$ 東北大学, $^{(7)}$ 金沢大学, $^{(8)}$ 中央研究院天文及天文物理研究所, $^{(9)}$ 国立成功大学, $^{(10)}$ 京都大学

Conjugate Observations of Faint Diffuse Emission at Subauroral Latitudes Using Arase and Ground Cameras: Multiple Event Analysis

#Masaki Gomi¹⁾, Kazuo SHIOKAWA¹⁾, Yoshizumi MIYOSHI¹⁾, Yuichi OTSUKA¹⁾, Shin-ichiro OYAMA¹⁾, Martin Connors²⁾, Atsuki SHINBORI¹⁾, Tomoaki HORI¹⁾, Chaewoo JUN¹⁾, Kazuhiro YAMAMOTO¹⁾, Iku SHINOHARA³⁾, Kazushi ASAMURA³⁾, Satoshi KASAHARA⁴⁾, Kunihiro KEIKA⁴⁾, Shoichiro YOKOTA⁵⁾, Fuminori TSUCHIYA⁶⁾, Atsushi KUMAMOTO⁶⁾, Yoshiya KASAHARA⁷⁾, Yoichi KAZAMA⁸⁾, Shiang-Yu Wang⁸⁾, Sunny W.Y. Tam⁹⁾, Ayako MATSUOKA¹⁰⁾

⁽¹Institute for Space-Earth Environmental Research, Nagoya University, ⁽²Athabasca University, ⁽³Japan Aerospace Exploration Agency, ⁽⁴Tokyo University, ⁽⁵Osaka University, ⁽⁶Tohoku University, ⁽⁷Kanazawa University, ⁽⁸Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, ⁽⁹National Cheng Kung University, ⁽¹⁰Kyoto University)</sup>

Discrete auroras such as STEVE and SAR arcs, typically observed at subauroral latitudes, have extensively been studied using all-sky imagers on the ground. On the other hand, diffuse emissions at subauroral latitudes have not well been studied. In this study, using high-sensitivity all-sky airglow cameras installed in Canada and Alaska, we have newly identified faint diffuse emissions at a wavelength of 557.7 nm with intensities of 300-1000 Rayleighs, which spread equatorward of the conventional auroral oval. We have analyzed 11 events of these faint diffuse emissions with conjugate plasma and field measurements by the Arase satellite in the inner magnetosphere. Conjugate observations of such diffuse emissions at subauroral latitudes and their corresponding magnetospheric source region have not been previously reported. These diffuse emission regions exhibited patchy structures in one case, while in the others they showed no distinct spatial structures but instead spread longitudinally with almost the same brightness across the field of view of the all-sky imager. In all 11 analyzed events, the magnetospheric conjugate regions corresponding to the emissions were located inside the plasmasphere, where plasma-sheet electrons with energies of several keV were simultaneously observed. At the same time, no plasma-sheet ions with such energies were detected. Plasma waves were observed in 8 events, including narrow-band plasmaspheric hiss (1 event) and lower-band chorus waves (1 event), both of which can cause cyclotron resonance scattering of plasma-sheet electrons. In the events without wave activity, emission intensifications associated with substorm onsets were observed (1 event). These results suggest that precipitation of plasma-sheet electrons into the ionosphere, driven by substorms and pitch angle scattering due to wave-particle interactions in the plasmasphere, is responsible for the formation of faint diffuse 557.7-nm emission regions equatorward of the auroral oval. However, in two events no corresponding waves or substorms were identified, and the cause of the emission remains unclear.

オーロラ帯のすぐ低緯度側に位置するサブオーロラ帯では、STEVE や SAR アークのような特有なディスクリートオーロラが報告されている。しかし、サブオーロラ帯のディフューズオーロラについては十分に研究されていない。本研究では、北米のサブオーロラ帯に設置された高感度全天カメラを用いて、これまでに観測されていたオーロラオーバルよりも低緯度側に広がる波長 557.7 nm で 300-1000 R の弱いディフューズな発光領域を新しく見出した。さらに、あらせ衛星によってその発光領域に対応する磁気圏領域を 11 例観測した。このようなサブオーロラ帯に広がるディフューズな発光に対応する磁気圏領域の同時観測はこれまで行われていない。これらのディフューズな発光領域は、1 例ではパッチ構造を示し、それ以外でははっきりとした構造を持たず、全天カメラの視野内で経度方向に同じ明るさの領域が広がる特徴を示した。解析した 11 例のすべてのイベントで、発光領域に対応する磁気圏領域はプラズマ圏内に位置しており、エネルギーが数 keV のプラズマシート電子群を同時に観測した。このとき、数 keV/q のプラズマシートイオンは観測されなかった。また、同時にプラズマ波動が観測される例は 8 例あり、とくにプラズマシート電子とサイクロトロン共鳴を引き起こす狭帯域プラズマ圏ヒス(1 例)や lower-band chorus 波動(1 例)を観測する例も存在した波動が観測されなかった例では、サブストームの発生にともなう増光が見られた(1 例)。これらのことから、プラズマシート電子がサブストームや波動によるピッチ角散乱による電離圏への降り込みが、オーロラオーバルよりも低緯度側の領域で引き起こされており、弱いディフューズな波長 557.7 nm の発光領域が形成されていると考えた。ただし、対応する波動やサブストームが見られない例も 2 例あり、その原因はわかっていない。