R006-11

B 会場 : 11/26 PM3(16:40-18:25)

17:40~17:55:00

非線形アンペール力による低プラズマ密度領域の形成と位相混合: IAW 発展への寄与

#川上 航典 $^{1)}$, 吉川 顕正 $^{2)}$, 深沢 圭一郎 $^{3)}$, 樋口 颯人 $^{4)}$ $^{(1)}$ 九州大学, $^{(2)}$ 九州大学, $^{(3)}$ 総合地球環境学研究所, $^{(4)}$ 株式会社 QunaSys

Phase Mixing and Formation of Low Plasma Density Region by Nonlinear Ampere Force: Implication for IAWs Development

#Kosuke KAWAKAMI¹), Akimasa YOSHIKAWA²), Keiichiro FUKAZAWA³), Hayato HIGUCHI⁴) (¹Kyusyu university, ⁽²Kyushu university, ⁽³Research Institute for Humanity and Nature, ⁽⁴QunaSys

Ionospheric Alfven Resonators (IARs), located in the upper terrestrial ionosphere, play crucial roles: they confine Alfven waves due to the background Alfven velocity gradient and serve as acceleration regions for inertial or dispersive Alfven waves. Thus, they have been regarded as one of the key regions for understanding the formation processes of auroral acceleration regions. Previous observations in IARs have revealed the presence of low-density plasma structures, extending several kilometers in the perpendicular direction and organizing in the altitude direction according to the resonance frequency, accompanied by electron and ion acceleration [Aikio et al., 2004; Chaston et al., 2006]. Among these findings, two aspects - (1)the development of perpendicular fine structures and (2)the decrease in plasma density - are essential conditions for the significant development of inertial Alfven waves. Based on this, a previous study [Lysak and Song, 2008] assumed the presence of density cavity regions and simulated Alfven wave propagation, demonstrating that phase mixing leads to the evolution of perpendicular structures. Furthermore, other studies [Streltsov and Lotko, 2008; Sydorenko et al., 2008] focused on the formation processes of low-density plasma regions via parallel nonlinear Lorentz force. Their simulations showed that the parallel nonlinear force associated with standing Alfven waves in the IAR expels plasma from the antinodes of the standing wave, thereby forming altitude-dependent density structures partially consistent with observations.

In this study, we extend these works by considering not only the parallel but also the perpendicular nonlinear Ampere force. We hypothesize that this additional contribution can more efficiently generate low-density plasma structures that are consistent with observations, both in the perpendicular and altitude directions. We perform two-dimensional multi-fluid MHD simulations [Toth et al., 2009] to investigate the self-consistent process from formation of low-density plasma regions to the subsequent development of perpendicular structures through phase mixing. Our results show that low-density regions formed by the perpendicular nonlinear Ampere force play the similar role as the assumed density-depleted regions in previous studies, leading to phase mixing and the perpendicular fine structures. In this presentation, we will report these results and discuss future perspectives.

地球電離圏上空に存在する IAR(Ionospheric Alfven Resonator) は、背景 Alfven 速度の勾配により Alfven 波を閉じ込める役割を持つ領域かつ、Inertial Alfven 波や Dispersive Alfven 波による加速領域であるため、オーロラ加速領域形成過程解明の鍵を握る領域としても注目されてきた。これまでの観測では、IAR 領域内において垂直方向に数 km 程度、高度方向に IAR の共鳴周波数に従う構造を持つ低プラズマ密度領域と、それに伴う電子・イオンの加速が生じていることが明らかにされている [Aikio et al., 2004. Chaston et al., 2006]。特に、(1) 垂直方向に発達した構造を持つこと、(2) 背景プラズマ密度の減少、の 2 つは Inertial Alfven 波が発達する上で不可欠な条件である。このことを元に、先行研究 [Lysak and Song 2008] では、プラズマ密度減少領域を仮定した上で Alfven 波の伝播について数値実験を行ったところ、位相混合によって垂直方向の構造が発展することを確認している。また先行研究 [Streltsov and Lotko 2008, Sydorenko et al., 2008] では、特に低プラズマ密度領域の形成過程に焦点を当てた数値シミュレーションから、IAR 中での定在 Alfven 波構造において働く平行方向の非線形ローレンツ力が定在波構造の腹からプラズマを押し出すことによって、高度方向に観測と部分的に類似する密度構造が形成されることを確認した。

そこで本研究では、平行方向だけでなく垂直方向の非線形アンペール力も考慮することで、垂直方向も含めて観測と一致し、かつより効率的に低プラズマ密度構造が形成されると着想し、低プラズマ密度領域の形成から位相混合によって垂直方向の構造が発展するまでを self-consistent な発展を解明すること目的として、2次元 multi-fluid MHD シミュレーションを用いた検証を行った。その結果、垂直方向の非線形アンペール力によって形成された低プラズマ密度領域の存在が、先行研究で仮定されていた低プラズマ密度領域と同じ働きをすることで、位相混合が生じ、垂直方向の構造が発展することを確認した。本発表ではこれらの結果について報告しつつ、今後の展望について概説する予定である。