R006-19

B 会場 : 11/27 AM1(9:15-10:45)

10:30~10:45:00

#字井 瞭介 $^{1)}$, マルチネス・カルデロン クラウディア $^{1)}$, Kolmašová Ivana $^{2,3)}$, Santolík Ondřej $^{2,3)}$, 塩川 和夫 $^{1)}$, 篠原 育 $^{4)}$, 三好 由純 $^{1)}$, 笠原 慧 $^{5)}$, 桂華 邦裕 $^{5)}$, 横田 勝一郎 $^{6)}$, 堀 智昭 $^{1)}$, 三谷 烈史 $^{4)}$, 高島 健 $^{4)}$, Wang Shiang-Yu $^{7)}$, 風間 洋一 $^{7)}$, Jun ChaeWoo $^{1)}$, 笠原 禎也 $^{8)}$, 松田 昇也 $^{8)}$, 新堀 淳樹 $^{1)}$, Bortnik Jacob $^{9)}$, Rodger Craig $J^{10)}$

(1) 宇宙地球環境研究所,名古屋大学,(2) Department of Space Physics, Institute of Atmospheric Physics CAS,(3) Faculty of Mathematics and Physics, Charles University,(4) 宇宙航空研究開発機構,(5) 東京大学,(6) 大阪大学大学院,(7) Academia Sinica Institute of Astronomy and Astrophysics,(8) 金沢大学,(9) University of California Los Angeles,(10) Department of Physics,University of Otago

Lightning-Generated Whistler wave coupling and its effects on electrons in the inner magnetosphere using ERG and WWLLN

#Ryosuke Ui¹⁾, Claudia Martinez-Calderon¹⁾, Ivana Kolmašová^{2,3)}, Ondřej Santolík^{2,3)}, Kazuo SHIOKAWA¹⁾, Iku SHINOHARA⁴⁾, Yoshizumi MIYOSHI¹⁾, Satoshi KASAHARA⁵⁾, Kunihiro KEIKA⁵⁾, Shoichiro YOKOTA⁶⁾, Tomoaki HORI¹⁾, Takefumi MITANI⁴⁾, Takeshi TAKASHIMA⁴⁾, Shiang-Yu Wang⁷⁾, Yoichi KAZAMA⁷⁾, Chaewoo JUN¹⁾, Yoshiya KASAHARA⁸⁾, Shoya MATSUDA⁸⁾, Atsuki SHINBORI¹⁾, Jacob Bortnik⁹⁾, Craig J Rodger¹⁰⁾

⁽¹Institute for Space Earth Environmental Research, Nagoya University, ⁽²Department of Space Physics, Institute of Atmospheric Physics CAS, ⁽³Faculty of Mathematics and Physics, Charles University, ⁽⁴ISAS, ⁽⁵Tokyo University, ⁽⁶Osaka University, ⁽⁷Academia Sinica Institute of Astronomy and Astrophysics, ⁽⁸Kanazawa University, ⁽⁹University of California Los Angeles, ⁽¹⁰Department of Physics, University of Otago

Lightning discharges in the Earth's atmosphere emit electromagnetic waves over a broad frequency spectrum. In the Very Low Frequency (VLF) range, energy can penetrate upwards into the ionosphere, propagating as whistler-mode waves into the inner magnetosphere. These waves are known to cause pitch-angle scattering of radiation belt electrons, leading to their precipitation into the atmosphere. While one-to-one correlations between single lightning events and subsequent electron precipitation have been established, the long-term impact of global lightning activity on the total trapped electron population remains an open question. Martinez-Calderon et al. (2020) conducted a year-long comparison of global lightning activity, measured by the World Wide Lightning Location Network (WWLLN), with trapped electron fluxes observed by the Van Allen Probes. They did not find the expected clear long-term connection between increased lightning activity and decreased radiation belt fluxes. A more recent analysis incorporating WWLLN, Van Allen Probes, and Arase data for 2018 yielded similar results (manuscript in preparation).

To explain the above, we assumed that the propagation efficiency of whistler waves from the atmosphere to the magneto-sphere is highly variable and potentially low. This study statistically quantifies this efficiency using data from Arase (PWE, MEP-e, HEP) and WWLLN. Focusing on the 30 days of peak global lightning activity in 2018, we applied the methodology of Zheng et al. (2016) to determine the correspondence rate between whistlers and lightning strokes. For exceptionally large-amplitude whistler events, we also conducted targeted case studies on concurrent electron data to identify direct signatures of pitch-angle scattering. Our approach provides key observational data on lightning-whistler coupling efficiency, addressing the inconsistencies between models and long-term observations.