R006-30

B会場: 11/27 PM1(13:45-15:45)

14:45~15:00:00

2024 年 5 月と 10 月に発生した巨大磁気嵐時のプラズマ圏電子密度の緩やかな回復について

#新堀 淳樹 $^{1)}$, 北村 成寿 $^{2)}$, 山本 和弘 $^{3)}$, 熊本 篤志 $^{4)}$, 土屋 史紀 $^{4)}$, 松田 昇也 $^{5)}$, 笠原 禎也 $^{5)}$, 寺本 万里子 $^{6)}$, 松岡 彩子 $^{7)}$, 大塚 雄一 $^{2)}$, 惣宇利 卓弥 $^{7)}$, 西岡 未知 $^{8)}$, PERWITASARI Septi $^{9)}$, 三好 由純 $^{2)}$, 篠原 育 $^{10)}$

(1 名大宇地研, (2 名古屋大学, (3 名古屋大学宇宙地球環境研究所, (4 東北大学, (5 金沢大学, (6 九州工業大学, (7 京都大学,

 $^{(8)}$ (独) 情報通信研究機構, $^{(9)}$ N I C T, $^{(10)}$ 宇宙航空研究開発機構

Slow recovery of the plasmaspheric electron density during the May and October 2024 severe geomagnetic storms

#Atsuki Shinbori $^{1)}$, Naritoshi KITAMURA $^{2)}$, Kazuhiro YAMAMOTO $^{3)}$, Atsushi KUMAMOTO $^{4)}$, Fuminori TSUCHIYA $^{4)}$, Shoya MATSUDA $^{5)}$, Yoshiya KASAHARA $^{5)}$, Mariko TERAMOTO $^{6)}$, Ayako MATSUOKA $^{7)}$, Yuichi OTSUKA $^{2)}$, Takuya SORI $^{7)}$, Michi NISHIOKA $^{8)}$, Septi PERWITASARI $^{9)}$, Yoshizumi MIYOSHI $^{2)}$, Iku SHINOHARA $^{10)}$

⁽¹Institute for Space-Earth Environmental Research, Nagoya University, ⁽²Nagoya University, ⁽³Institute for Space-Earth Environmental Research, Nagoya University, ⁽⁴Tohoku University, ⁽⁵Kanazawa university, ⁽⁶Kyushu Institute of Technology, ⁽⁷Kyoto University, ⁽⁸NICT, ⁽¹⁰JAXA)</sup>

The spatial distribution of electron density in the ionosphere shows a severe change during geomagnetic storms and substorms driven by solar wind disturbances. Electron density variations and irregularities can cause total signal blackouts during strong scintillation periods and enhance satellite positioning errors. We analyzed Global Navigation Satellite System (GNSS) - total electron content (TEC) and Arase satellite observation data to elucidate the slow recovery of the plasmaspheric electron density during the May and October 2024 geomagnetic storms. To identify the electron density variation in the ionosphere, we calculated the ratio of the TEC difference (rTEC), which is defined as the difference from the 10-quiet-day average TEC normalized by the average value. Additionally, we estimated the electron density in the plasmasphere and inner magnetosphere from the upper frequency limit of the upper hybrid resonance (UHR) waves observed by the Arase satellite. Consequently, an L-t plot of the electron density showed that the plasmasphere shrank up to L = 1.5-2.5 after a sudden commencement of both geomagnetic storms. During the storm recovery phase, the plasmapause gradually shifted to a higher L-shell. The electron density in the plasmasphere recovered the geomagnetically quiet-time level on a 3- or 4-day scale. The timescale of the plasmaspheric refilling was much longer than that of other coronal mass ejection (CME)-driven geomagnetic storms during the Arase era. The rTEC in the Northern Hemisphere showed that an enhancement in the rTEC value occurred at high latitudes (60° - 70° in magnetic latitude (MLAT)) in the daytime (10 - 14 in magnetic local time (MLT)), approximately 1 h after the storm onset. Subsequently, a tongue of ionization (TOI) formed in the polar cap owing to the enhancement of two-cell convection in the high-latitude ionosphere during the main phase of geomagnetic storms. Both geomagnetic storm events showed that the rTEC was globally depleted during the recovery phase. The depletion indicates the occurrence of a negative storm owing to a neutral composition (O/N2) change driven by the energy input from the magnetosphere in the high-latitude thermosphere. Furthermore, it took more than 3 days for the plasmaspheric electron density to recover the geomagnetically quiet-time level. The coincidence of the long refilling timescale of the plasmasphere and the depletion of the rTEC suggests that a strong negative storm impedes plasmaspheric refilling for the severe geomagnetic storms.

電離圏電子密度の空間分布は、太陽風擾乱によって駆動される磁気嵐やサブストーム中に顕著な変動を示す。特に、電 離圏の電子密度変動や不規則構造は、電波を散乱させ、信号の遮断を引き起こす可能性があり、衛星測位誤差を拡大させ る原因となりうる。本研究では、2024年5月と10月の磁気嵐中にプラズマ圏の電子密度がゆっくりと回復するメカニズ ムを解明するため、全球測位衛星システム(GNSS) - 全電子数(TEC)データとあらせ衛星の観測データの解析を行っ た。電離圏電子密度の変動を同定しやすくするため、10 日間の地磁気静穏日の平均 TEC 値から算出した差分 TEC 値を 計算し、この値を平均値で正規化した値を差分 TEC 比 (rTEC) として定義した。さらに、あらせ衛星が観測した高域混 成共鳴(UHR)波動の上限周波数から、プラズマ圏と内磁気圏の電子密度を推定した。その結果、電子密度の L-t プロッ トにおいて、磁気嵐開始後にプラズマ圏が L = 1.5-2.5 まで急速に収縮し、その後の磁気嵐の回復相においてプラズマ圏 が徐々に高L値側へ拡大していくことが示された。両磁気嵐イベントについてプラズマ圏の電子密度が地磁気静穏時の レベルに回復するまでに3日または4日間かかっていた。プラズマ圏の再充填の時間スケールは、あらせ衛星による観 測が実施している期間に発生した他のコロナ質量放出(CME)駆動の磁気嵐イベントに比べてはるかに長かった。北半 球における rTEC の磁気緯度―地方時の 2 次元マップにおいて、磁気地方時 10~14 時、磁気緯度 60°~70°の昼間側 の高緯度域で、磁気嵐の開始から約1時間後にrTEC値の増大が発生していたことがわかった。その後、磁気嵐の主相時 における高緯度電離圏の2セル対流の強化により、極冠域に伸びる高電子密度領域(TOI)が形成されていた。両方の磁 気嵐イベントの回復相において rTEC 値が全球的に減少し、静穏なレベルに戻るまでに 3 日以上も要した。この rTEC 値 の減少は、磁気圏からのエネルギー入力によって高緯度熱圏で中性大気組成(O/N 🛛)の変化が生じ、電離圏負相嵐が発 生したことを示している。プラズマ圏の長い再充填時間スケールと rTEC の減少している期間が一致することは、巨大磁 気嵐時に発生した強い電離圏負相嵐がプラズマ圏の再充填を妨げていることを示唆している。