ポスター1:11/25 AM1/AM2 (9:15-12:35)

科学衛星あらせによって観測された広帯域静電ノイズ低周波成分の統計解析

#金武 剛史 $^{1)}$, 三宅 壮聡 $^{1)}$, 笠原 禎也 $^{2)}$ $^{(1)}$ 富山県立大学, $^{(2)}$ 金沢大学

Statistical analysis of low-frequency components of Broadband Electrostatic Noise observed by ARASE

#Tsuyoshi Kanetake¹⁾, Taketoshi MIYAKE¹⁾, Yoshiya KASAHARA²⁾
⁽¹Toyama Prefectural University, ⁽²Kanazawa University

Broadband Electrostatic Noise (BEN) is a plasma wave observed in the magnetosphere. This wave is observed as an electrostatic wave with a broad spectrum ranging from low-frequency mixed frequencies to electron plasma frequencies, and occurs in various regions of the magnetosphere, including the plasma sheet boundary layer. BEN is composed of two types of waves: low-frequency components and high-frequency components. It has been confirmed that the low-frequency components of BEN are waves with electric fields perpendicular to the magnetic field. The objective of this study is to perform statistical analysis of the low-frequency components of BEN based on observations from the scientific satellite Arase, and to clarify the detailed conditions for the generation of BEN's low-frequency components and their relationship with the surrounding plasma environment. In previous studies, waves considered to be the low-frequency component of BEN were extracted using machine learning. In this study, we will confirm the direction of the electric field relative to the magnetic field for waves considered to be the low-frequency component of BEN and analyze waves with a large vertical electric field component relative to the magnetic field using various plasma parameters such as observation location, magnetic field strength, and ion energy.

広帯域静電ノイズ(BEN:Broadband Electrostatic Noise)とは、磁気圏で観測されるプラズマ波動である。この波動は広帯域かつ低域混成周波数から電子プラズマ周波数に及ぶスペクトルを持つ静電波動として観測され、プラズマシート境界層をはじめ磁気圏の様々な領域で発生する。BEN は低周波成分と高周波成分の2種類の波動によって構成されており、低周波成分は磁場に対して垂直方向に電場を持つ波動であることが確認されている。本研究の目的は、科学衛星あらせの観測結果からBEN の低周波成分の統計解析を行い、BEN の低周波成分の詳しい発生条件や周囲のプラズマ環境との関係などを解明することである。先行研究では、機械学習を用いたBEN の低周波成分と考えられる波動の抽出が行われたため、本研究ではBEN の低周波成分と考える波動に対して磁場に対する電場の方向を確認し、磁場に対して垂直な電場成分を多く持つ波動に対して、観測位置や磁場強度、イオンエネルギーなど様々なプラズマパラメータを用いて解析を行う。