冷たいプラズマ中の波動の分散関係に対する背景磁場構造の影響についての局所標 構を用いた考察

#礒野 航 $^{1)}$, 吉川 顕正 $^{2)}$, 加藤 雄人 $^{1)}$, 熊本 篤志 $^{1)}$ (1 東北大学, $^{(2}$ 九州大学

Effect of the Background Magnetic-Field Geometry on the Dispersion Relation in Cold-Plasma Using a Local Field-Aligned Frame

#Ko ISONO¹⁾, Akimasa YOSHIKAWA²⁾, Yuto KATOH¹⁾, Atsushi KUMAMOTO¹⁾
⁽¹Tohoku University, ⁽²Kyushu University

The Earth's magnetosphere, structured by the terrestrial magnetic field and the solar wind, undergoes substantial variations driven by solar-wind dynamics. The spatial distribution and direction of the geomagnetic field are among the most important factors governing plasma phenomena observed near Earth. Characterizing and assessing the magnetic-field structure is therefore essential for understanding physics processes in magnetosphere.

We analytically investigate how inhomogeneities in the background magnetic field affect on the dispersion relation in a cold plasma based on our previous work of a local frame to quantify magnetic-field curvature and strength gradients, which enables us to evaluate magnetic-structure in arbitrary local regions (Yoshikawa, JpGU, 2023). Most previous studies of coldplasma waves either assume a spatially uniform magnetic field (e.g., Baumjohann, 1996) or rely on numerical calculations that discretely approximate inhomogeneous fields (e.g., Kimura, 1966). While the latter can reproduce spatial variation, they make it difficult to disentangle how individual geometric quantities of the background field—such as strength gradients, curvature, and torsion—contribute to the dispersion relation and propagation characteristics.

Using a local field-aligned frame, we derive and examine the dispersion relation including first-order gradients of the background field. We assume a wavenumber that is constant along a given field line to isolate the influence of the background geometry from effects due to wavenumber variation. Our analysis shows explicitly, at the level of the dispersion relation, that the background magnetic-field structure, especially the geometric term associated with field-line convergence, introduces an imaginary component in the wavenumber and thereby directly modulates the wave amplitude. We also find that torsion and curvature predominantly affect the amplitude to first order. In addition, we perform numerical calculations of plasma-wave propagation in locally measured magnetic fields to assess the applicability of the analytical framework and evaluate the effects of the inhomogeneity quantitatively.

地球磁場と太陽風の相互作用により形成される地球磁気圏は、太陽風の変動によって大きく変化する。地球磁場の強度 分布や方向は、地球周辺で見られるプラズマ現象の振る舞いを定める最も重要な要素の一つである。そのため、地球磁場 の構造を把握、評価することは地球周辺でのプラズマ現象を把握し、放射線帯やオーロラなどのジオスペース分野の研究 を進めるうえで非常に重要である。

本研究ではこれまでに、磁場の曲率や強度勾配を定量化するための局所標構を用いたシステム (Yoshikawa, JpGU, 2023) を構築し、任意の局所領域での磁場構造評価を可能とした。この枠組みを用い、冷たいプラズマ中の波動が、背景磁場の不均一性からどのような影響を受けるかを解析的に検討する。冷たいプラズマ波動に関する考察の多くは空間的に一様な磁場を仮定するか (e.g., Baumjohann, 1996)、あるいは不均一場を離散的に近似した数値計算 (e.g., Kimura, 1966) に依拠してきた。後者は波動の空間変化を再現できる一方、背景磁場の各幾何量(強度勾配・曲率・捩率など)が分散関係および伝搬特性に与える寄与を分離して理解することは難しい。

本研究では、局所標構を用いた手法によって背景磁場の一次の勾配までを考慮したプラズマ波動の分散関係について考察する。波動の波数は磁力線に沿って一定と置き、波数の変化の影響を除いた、背景磁場構造が分散関係に与える影響についての考察に焦点を当てる。その結果、背景磁場の構造、特に磁力線の密集に対応する幾何学的項が波数の虚数成分を生じさせ、波動の振幅に直接的な影響をもたらすことを明示した。また、他のねじれや曲率も主に波の振幅に影響を与えることを示した。さらに本発表では、実際に局所磁場におけるプラズマ波動の数値計算を試み解析結果と比較して、考察の妥当性を検討し、不均一性の影響を定量的に評価する。