#河野 英昭 $^{1)}$, 行松 彰 $^{2)}$, 西谷 望 $^{3)}$, 田中 良昌 $^{4)}$, 堀 智昭 $^{5)}$ $^{(1}$ 九州大学, $^{(2)}$ 国立極地研究所、総合研究大学院大学, $^{(3)}$ 名古屋大学, $^{(4)}$ 国立極地研究所, $^{(5)}$ 名古屋大学・宇宙地球環境研究所

Two-dimensional distribution of the plasma density obtained by applying the DTFT to the FLR data from SuperDARN radars

#Hideaki KAWANO¹⁾, Akira Sessai YUKIMATU²⁾, Nozomu NISHITANI³⁾, Yoshimasa TANAKA⁴⁾, Tomoaki HORI⁵⁾
⁽¹Kyushu University, ⁽²National Institute of Polar Research, SOKENDAI, ⁽³Nagoya University, ⁽⁴National Institute of Polar Research, ⁽⁵Institute for Space-Earth Environmental Research, Nagoya University

Some of the fluctuations in the solar wind, including those causing sudden impulses (SI), propagate into the magnetosphere and excite eigen-oscillations of the magnetic field lines and the frozen-in plasma via the mechanism called field-line resonance (FLR). It is known that the gradient methods enable us to effectively extract FLR signals from observed data. From the identified FLR frequency, one can estimate the mass density of plasma along the magnetic field line because, in a simplified expression, 'heavier' field line oscillates more slowly.

We have been applying the gradient methods to the VLOS (Velocity along the Line of Sight) data of the SuperDARN radars. The radars emit azimuthally-collimated beams of radio waves in the HF range, and some of them are backscattered by the ionosphere, while some others are backscattered by the ground and sea surface. From the Doppler shift of backscattered signals, one can calculate VLOS.

Ionosphere-backscattered signals yield VLOS of the horizontally-moving ionospheric plasma (at mid- to low latitudes, VLOS also has a vertical component because the ambient magnetic field is tilted), while ground/sea-backscattered signals yield VLOS corresponding to the vertical motion of the ionospheric plasma because the length of the ray path of a beam can only be changed by the vertical motion of the ionosphere.

We have so far applied the gradient methods to VLOS for a few events after SI's, and identified an FLR event in which ionosphere-backscattered signals and sea surface-backscattered signals were simultaneously observed. The mass density was thereby estimated using both scatters. As a result, the latter was significantly smaller than the former in the nearby place. This significant difference could come from a fairly large frequency spacing of the FFT analysis due to the fairly small duration (30 min) of the event.

Thus, we have developed codes to apply the Discrete-Time Fourier Transform (DTFT) method to timeseries data in general. This method is designed to be applied to timeseries data with a constant sampling time. An advantage of this method is that it can calculate the Fourier Transform (FT) at any frequency (below the Nyquist frequency).

We have developed the DTFT codes and as a result of applying them to the above-stated ionosphere-backscattered signals and the sea surface-backscattered signals simultaneously observed at the radar, we judge that the DTFT generally provides smaller density differences between ionosphere-backscattered signals and sea surface-backscattered signals than the FFT. Based on this judgment, we will apply the DTFT to sea surface-backscattered signals simultaneously observed by a SuperDARN radar for different events, and obtain the two-dimensional (2D) distribution of the magnetospheric plasma density within its field of view. After that, we will combine densities obtained by a few radars simultaneously observing the same event, and obtain the larger-scale 2D density distribution. We will present the results with details at the meeting.