ポスター1:11/25 AM1/AM2 (9:15-12:35)

あらせ衛星による中緯度磁気圏における kinetic Alfvén wave の観測研究

#齋藤 幸碩 $^{1)}$, Artemyev Anton $V^{(2)}$, 加藤 雄人 $^{(1)}$, 笠羽 康正 $^{(3)}$, 熊本 篤志 $^{(1)}$, 笠原 禎也 $^{(4)}$, 堀 智昭 $^{(5)}$, 松岡 彩子 $^{(6)}$, 寺本 万里子 $^{(7)}$, 山本 和弘 $^{(5)}$, 浅村 和史 $^{(8)}$, Wang Shiang-Yu $^{(9)}$, 風間 洋一 $^{(9)}$, Tam Sunny Wing-Yee $^{(10)}$, Jun Chae-Woo $^{(5)}$, 篠原 育 $^{(8)}$, 三好 由純 $^{(5)}$

⁽¹ 東北大学大学院理学研究科地球物理学専攻,⁽²Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles,⁽³ 東北大学大学院理学研究科惑星プラズマ・大気研究センター,⁽⁴ 金沢大学学術メディア創成センター,⁽⁵ 名古屋大学宇宙地球環境研究所,⁽⁶ 京都大学大学院理学研究科附属地磁気世界資料解析センター,⁽⁷ 九州工業大学大学院工学研究院宇宙システム工学研究系,⁽⁸ 国立研究開発法人宇宙航空研究開発機構宇宙科学研究所,⁽⁹ 中央研究院天文及天文物理研究所,⁽¹⁰Institute of Space and Plasma Sciences, National Cheng Kung University

Observational study of kinetic Alfvén waves in the mid-latitude magnetosphere using the Arase satellite

#Koseki Saito¹⁾, Anton V. Artemyev²⁾, Yuto Katoh¹⁾, Yasumasa Kasaba³⁾, Atsushi Kumamoto¹⁾, Yoshiya Kasahara⁴⁾, Tomoaki Hori⁵⁾, Ayako Matsuoka⁶⁾, Mariko Teramoto⁷⁾, Kazuhiro Yamamoto⁵⁾, Kazushi Asamura⁸⁾, Shiang-Yu Wang⁹⁾, Yoichi Kazama⁹⁾, Sunny Wing-Yee Tam¹⁰⁾, Chae-Woo Jun⁵⁾, Iku Shinohara⁸⁾, Yoshizumi Miyoshi⁵⁾

⁽¹Department of Geophysics, Graduate School of Science, Tohoku University, ⁽²Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, ⁽³Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, ⁽⁴Emerging Media Initiative, Kanazawa University, ⁽⁵Institute for Space – Earth Environmental Research, Nagoya University, ⁽⁶Data Analysis Center for Geomagnetism and Space Magnetism, Grad. Sch. Sci., Kyoto University, ⁽⁷Department of Space Systems Engineering, Faculty of Engineering, Kyushu Institute of Technology, ⁽⁸Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, ⁽⁹Institute of Astronomy and Astrophysics, Academia Sinica, ⁽¹⁰Institute of Space and Plasma Sciences, National Cheng Kung University

Kinetic Alfvén waves (KAWs) are electromagnetic waves with a perpendicular wavelength on the ion Larmor radius (ρ_i) scale. KAWs have a parallel electric field component (δ_i E $_{jj}$), accelerating ions and electrons along a magnetic field line from several hundred eV to a few keV [e.g., Hasegawa, 1976]. KAWs are observed in various regions, such as the solar wind [e.g., Bale et al., 2005], the dayside magnetosphere [e.g., Gershman et al., 2017], the inner magnetosphere [e.g., Maynard et al., 1996], the nightside magnetotail [e.g., Chaston et al., 2012], and the plasma sheet boundary layer (PSBL) [e.g., Wygant et al., 2002].

In particular, the Polar satellite observed KAWs in the PSBL at altitudes of 4-6 R_E and reported parallel ion and electron beams of 1-2 keV, which were considered to be generated by the KAWs [Wygant et al., 2002]. However, the Polar observations had some limitations. For instance, the magnetometer had a 4 Hz Nyquist frequency, which prevented it from detecting higher-frequency components of kinetic Alfvén waves (KAWs). Additionally, particle instruments of Polar, which measured velocity distribution functions, operated with a 13-second cycle, making it challenging to resolve variations in the distribution on shorter timescales.

To overcome these observational limitations, this study utilizes high-resolution field and particle data from the Arase (ERG) satellite. We analyze an event from 22:25 to 23:25 UT on September 1, 2022, when Arase was at a magnetic latitude of 38 $^{\circ}$. This mid-latitude region is crucial for understanding the propagation of KAWs from their equatorial source region. The plasma parameters observed during this event were number density of $^{\circ}0.1~\rm cm^{-3}$, ion temperature of a few keV, electron temperature of several hundred eV, and a magnetic field strength of $^{\circ}270~\rm nT$. The ion plasma beta in this environment is comparable to the electron-to-ion mass ratio (β $_i \gtrsim m_e/m_i$), under which condition one can expect to observe KAWs. During this event, we identified an electric field enhancement at several Hz, which was associated with an enhancement of the electron energy flux from several hundred eV to several keV. Such observations are essential for understanding particle acceleration mechanisms, like the formation of several keV high-energy beams through nonlinear Landau resonance [Saito et al., 2025] and their connection to auroral processes.

To detect KAWs, we calculated the power spectral densities of the perpendicular electric (δ \mathbf{E}_{\perp}) and magnetic (δ \mathbf{B}_{\perp}) field components using the Morlet wavelet transform. We found that their amplitude ratio, $|\delta$ $\mathbf{E}_{\perp}|/|\delta$ $\mathbf{B}_{\perp}|$, in the several-Hz range is consistent with the KAW dispersion relation, which means that the electromagnetic field fluctuation can be the KAWs. During time intervals when this dispersion relation was satisfied, we also observed that the pitch angle distributions of protons and electrons were concentrated in the parallel (0°) and anti-parallel (180°) directions, suggesting parallel acceleration by KAWs. Furthermore, this event presents a good opportunity for conjugate observations with the THEMIS-A satellite located near the magnetic equator. In this presentation, we will report the results of these analyses and discuss the propagation and particle acceleration processes of KAWs.

Kinetic Alfvén wave (KAW) は、磁力線に垂直な波長がイオンラーマー半径 (ρ_i) と同程度のスケールを持つ電磁波動である。KAW は磁力線に平行な電場成分 (δ_{ij}) を持ち、この電場がイオンや電子を磁力線に沿って数百 eV から数 keV まで加速することが知られている [e.g., Hasegawa, 1976]。KAW は、太陽風 [e.g., Bale et al., 2005]、地球磁気圏の昼側 [e.g., Gershman et al., 2017]、内部磁気圏 [e.g., Maynard et al., 1996]、夜側磁気圏尾部 [e.g., Chaston et al., 2012]、プラズマシート境界層 (PSBL)[e.g., Wygant et al., 2002] など、様々な領域で観測される。

特に、Polar 衛星は高度 4 – 6 R_E の PSBL において KAW を観測し、それによって生成されたと考えられる 1 – 2 keV の平行イオン・電子ビームを報告した [Wygant et al., 2002]。しかし、Polar 衛星の観測には、磁力計のナイキスト周波数が 4 Hz であるため KAW の高周波成分を捉え切れない点や、粒子計測器の速度分布関数が 13 秒周期の算出であるため、それより短い時間スケールの変動を追跡できない点といった限界があった。

これらの観測的限界を克服するため、本研究では磁気圏衛星「あらせ」の高時間分解能な電磁場・粒子データを用いる。解析対象は 2022 年 9 月 1 日 22:25 – 23:25UT のイベントであり、この時あらせ衛星は磁気緯度 38 度に位置していた。このような中緯度帯は、磁気赤道付近で発生する KAW の伝播過程を理解する上で極めて重要である。観測時のプラズマは、数密度が $0.1~{\rm cm}^{-3}$ 程度、イオン温度が数 keV、電子温度が数百 eV、磁束密度が 270 nT 程度であった。この環境では、イオンプラズマベータ値が電子とイオンの質量比と同程度であり ($\beta_i \gtrsim m_e/m_i$)、KAW が観測され得る。本イベントでは、数 Hz の電場の増強と、それに関連した数百 eV から数 keV の電子エネルギーフラックスの増強が確認された。このような観測は、非線形ランダウ共鳴による高エネルギービームの形成 [Saito et al., 2025] や、オーロラ現象との関連を考える上で不可欠である。

観測される低周波電磁場擾乱が KAW であることを確認するために、Morlet wavelet 変換を用いて磁力線に垂直な電場成分 (δ \mathbf{E}_{\perp}) と磁場成分 (δ \mathbf{B}_{\perp}) のパワースペクトル密度を算出し、その比 ($|\delta$ $\mathbf{E}_{\perp}|/|\delta$ $\mathbf{B}_{\perp}|$) を求めた。その結果、数Hz 帯において比が KAW の分散関係と一致し、電磁場擾乱が KAW であることを確認した。また、この分散関係が確認された時間帯には、イオンと電子のピッチ角分布が磁力線に平行 (0°) または反平行 (180°) 方向に集中する様子が確認され、KAW による平行加速が示唆された。さらに、本イベントは磁気赤道付近に位置する THEMIS-A 衛星との共役観測の好機である。本発表では、これらの解析結果を総合し、KAW の伝播と粒子加速の過程について議論する。