高空間分解能カメラを用いたオーロラビーズ発生過程の可視化:複数事例の解析

#秋元 咲那 $^{1)}$, 細川 敬祐 $^{1)}$, 大山 伸一郎 $^{2)}$, 小川 泰信 $^{3)}$, 三好 由純 $^{2)}$, 田中 良昌 $^{3)}$ $^{(1)}$ 電気通信大学、 $^{(2)}$ 名古屋大学宇宙地球環境研究所、 $^{(3)}$ 国立極地研究所

Fine-scale visualization of initial development of auroral beads: Multi-event analysis using a high-spatial-resolution camera

#Sana AKIMOTO¹⁾, Keisuke HOSOKAWA¹⁾, Shin-ichiro OYAMA²⁾, Yasunobu OGAWA³⁾, Yoshizumi MIYOSHI²⁾, Yoshimasa TANAKA³⁾

⁽¹The University of Electro-Communications, ⁽²Institute for Space and Earth Environmental Research, Nagoya University, ⁽³National Institute of Polar Research

During the early stage of the expansion phase of substorms, discrete auroras with enhanced optical luminosity are seen to fill the entire sky, which is called auroral breakup. This study focuses on a phenomenon called "auroral beads," which have attracted attention as a precursor of auroral breakup. Auroral beads are bead-like spatial structure of auroras that appear immediately before the auroral breakup. Beads have a spatial scale of several kilometers to several tens of kilometers, grow while propagating in the longitudinal direction, and eventually form large vortical structures. Based on its magnetic conjugacy and the exponential time evolution of luminosity, plasma instability in the magnetotail is thought to be involved in their formation. However, the specific mechanism has not yet been identified. Previous studies often used all-sky cameras with a low spatial resolution, which were not sufficient to capture the site of formation or the initial development of auroral beads at the ionospheric altitude. Further high-resolution observations in the ionosphere may reveal the spatiotemporal characteristics of bead structures, and help to understand how plasma instabilities in the magnetotail are projected onto the ionosphere. Thus, by utilizing the new qCMOS camera with a relatively narrower field-of-view, more detailed observations will be possible.

This study analyzes three cases of auroral beads using the qCMOS camera, in Skibotn, Norway (69.35N, 20.36E), which has a higher spatial resolution than conventional all-sky cameras. We analyzed three events respectively appeared on November 10, 2023, December 21, 2024, and December 24, 2024. As for the geomagnetic activity, substorm-induced variations of the geomagnetic X component (negative bays) were detected at Kilpisjärvi with amplitudes of about 200 nT, 300 nT, and 250 nT, respectively, and increases in the AE index of about 200 nT, 500 nT, and 600 nT were observed, suggesting that these beads events were observed in association with small to moderate substorm activities. The camera is equipped with a lens with a field of view of about 70 degrees and a BG3 filter to measure only the prompt emissions. The qCMOS camera has a spatial resolution of 1024 x 576 pixels and a temporal resolution of 20 FPS, enabling high-speed imaging of aurora with approximately 0.1 km spatial resolution near the center of the field of view. This allows us to detect smaller auroral beads at earlier stages of their development, which has been difficult to observe with conventional EMCCD cameras (256 x 256 pixels). These observations provide important dataset for understanding the generation mechanisms of beads in the magnetotail by monitoring auroral development at ionospheric altitudes.

To clarify the spatiotemporal evolution of auroral bead structures, we analyzed three events in which auroral beads were clearly observed within the narrow field-of-view of the qCMOS camera. The images were mapped and flat-fielded to geographic coordinates, and we analyzed the north-south and east-west keograms, continuous auroral images, and the temporal variation of the brightness and wavenumber in the regions containing the beads. In the case of the event on November 10, 2023, we found that wave-like structures with scales less than ~10 km propagating eastward were visible in the background-subtracted images starting approximately five minutes before the auroral bead structures became prominent. During this pre-bead period, the east-west wavenumber was observed to decrease, and a two-stage growth in brightness was identified. These wave-like structures may correspond to the seed perturbations for the instability that drives the formation of auroral beads. In the event on December 21, 2024, we observed that a bead-like structure initially developed, temporarily faded, and then reformed, indicating a more dynamic development process. In the event on 24 December 2024, the camera captured motion of an auroral arc and subsequent rapid development into clearer bead-like structures. Among the three events, the beads appeared at different locations within the field of view (to the north, near zenith, and to the south) suggesting that the apparent spatial characteristics of auroral beads may vary depending on the viewing angle. In the presentation, we will show the temporal evolution of these three auroral bead events and discuss the time development of propagation speed and wavenumber.

サブストームの爆発相では、輝度が高いディスクリートオーロラが全天を埋め尽くすように見られ、これをオーロラブレイクアップと呼ぶ。本研究では、オーロラブレイクアップの前兆として注目されている「オーロラビーズ」と呼ばれる現象に着目する。オーロラビーズは、オーロラブレイクアップ前に現れる微小なビーズ状のオーロラで、数 km から数十km の空間スケールを持ち、東西に伝搬しながら成長し、最終的には大きな渦構造を形成するという特徴を持つ。南北半球での磁気共役性や、輝度が指数関数的に時間発展する様子から、磁気圏尾部のプラズマ不安定性がその生成に関与していると考えられるが、その具体的なメカニズムの特定には至っていない。これは、従来研究の多くが空間解像度の低い全

天カメラを用いていたため、電離圏高度におけるオーロラビーズの形成場所や初期発達過程を十分に捉えることができなかったためである。今後、高空間分解能による電離圏での観測から、ビーズ構造の時空間的な特徴を明らかにすることは、磁気圏尾部でのプラズマ不安定性がどのように電離圏に投影されるかを理解する端緒となり得る。しかし、このような問題意識に基づいて、本研究では、新しく稼働を開始した広視野レンズを用いた qCMOS カメラによる観測を活用することで、オーロラビーズの高時空間分解能観測を行った。

本研究では、従来の全天カメラよりも空間解像度の高い qCMOS カメラを用いて、オーロラビーズの複数の事例の解析を行った。 qCMOS カメラはノルウェーの Skibotn (69.35N, 20.36E) に設置されており、解析は 2023 年 11 月 10 日, 2024年 12 月 21 日, 2024年 12 月 24 日の 3 例のデータに対して実施した。カメラの設置場所の近傍であるキルピスヤルビにおけるこれら 3 例に伴う地磁気活動は、サブストームによる地磁気 X 成分の変動(negative bay)が約 200 nT, 300 nT, 250 nT 程度の振幅で観測され、AE 指数の増大も 200 nT, 500 nT, 600 nT 程度であったことから、小規模から中規模のサブストームに繋がるオーロラビーズを捉えていたと考えられる。カメラには、視野角 70° 程度の広視野レンズと即時発光のオーロラ光のみを透過する BG3 フィルターが装着されている。本研究で用いる qCMOS カメラは空間分解能 0.1 km を有し、従来は検出困難であったより小さな初期段階のオーロラビーズを捉えることを可能にする。取得される画像の画素数は 1024×576 ピクセルであり、従来の EMCCD カメラと比較して約 8 倍の空間解像度を持つ。 20 FPS の高時間分解能により、先行研究と同等かより小さい 10 km 以下のビーズ構造とその挙動をより鮮明に捉えることができた。これらの特性は、電離圏高度でのビーズの発現を詳細に観測することで磁気圏尾部での生成メカニズム解明へとつながる重要な観測情報を与えることが期待される。

qCMOS カメラの視野内でビーズが鮮明に観測された 3 例の画像に対して、地理座標へのマッピングとフラットフィールディングを行い、南北・東西ケオグラム、オーロラビーズの連続画像、オーロラビーズを含む領域の輝度、波数の時間変化を解析した。 2023 年 11 月 10 日事例では、オーロラビーズの構造が顕在化する 5 分程度前から、背景成分を引いた画像において東へ伝搬する 波長 10 km 程度の小スケールの波状構造が見えていることが明らかになった。 この時間帯において、波数の減少と輝度の増大に二段階の成長性が見られた。 この波状構造は、オーロラビーズの駆動源となる不安定性の種に対応している可能性がある。 また、 2024 年 12 月 21 日の観測例に関しては、ビーズのような構造ができ始めてから一度収まり、再び東西アークが構造化してビーズができるような振る舞いが見られた。 2024 年 12 月 24 日の例では、オーロラアークが移動したあとに、明瞭なビーズ構造が急激に形成されるところが捉えられた。 これら 3 つの例では、ビーズがカメラの視野に対して北側、 天頂角付近、 南側に存在しており、 視野角によってビーズの空間構造の見え方が異なる可能性があることも分かった。 発表では、 これらの 3 つのオーロラビーズの時間発展を示し、 伝搬速度や波数の時間発展から、 ビーズの形成過程についての議論を行う。