ポスター1:11/25 AM1/AM2 (9:15-12:35)

AMPERE データを用いた高緯度フィールドアライン電流のクラスタリング解析と 代表構造の抽出

#池元 大 ¹⁾, 吉川 顕正 ²⁾
⁽¹ 九大院理・地球惑星、⁽² 九大・理

Clustering Analysis and Extraction of Representative Field-Aligned Current Patterns Using AMPERE Data

#Dai Ikemoto¹⁾, Akimasa Yoshikawa²⁾

(1 Graduate School of Science, Kyushu University, (2 Faculty of Science, Kyushu University

Field-Aligned Currents (FACs), which connect the Earth's magnetosphere and ionosphere, form large-scale current systems in response to solar wind variability and play a crucial role in understanding the magnetosphere – ionosphere (M-I) coupling process. In particular, the spatial distribution and temporal evolution of high-latitude FACs are essential for understanding magnetospheric dynamics and for space weather forecasting. However, traditional statistical models and empirical reconstructions (e.g., Weimer, 2001) are based on averaged FAC structures and are limited in their ability to capture the diversity of observed current patterns and nonlinear state transitions.

Recently, Kunduri et al. (2020) demonstrated that deep learning models can be used to predict future distributions of FACs by treating AMPERE FAC maps as time-series image data. Their results suggest that FAC structures tend to evolve in temporally and spatially ordered patterns, which indicates the potential usefulness of unsupervised machine learning approaches for extracting typical current structures and classifying dynamic states.

In this study, we apply principal component analysis (PCA) and k-means clustering to global FAC maps obtained every 10 minutes from the AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) project using the Iridium satellite constellation. The objective is to extract representative spatial patterns of high-latitude FACs in a data-driven manner. We are currently conducting data preprocessing and initial clustering analysis, and the results will be presented at the conference.

地球磁気圏と電離圏を結ぶ沿磁力線電流(Field-Aligned Currents, FACs)は、太陽風の変動に応答して大規模に形成される電流系であり、磁気圏―電離圏結合過程の理解において重要な役割を果たす。特に高緯度電離圏における FAC の空間分布や時間発展の特徴は、宇宙天気予報や磁気圏状態の把握にとって不可欠である。しかし、従来の統計モデルや経験的再現(例:Weimer, 2001)は FAC の平均構造に基づいており、観測に見られる多様な電流分布や非線形な状態遷移を十分に捉えるには限界があった。

近年、Kunduri et al. (2020) は、AMPERE の FAC マップを深層学習モデルに入力することで、FAC の将来的な空間分布を予測可能であることを示した。この成果は、FAC 構造が時空間的に一定の秩序やパターンに従って遷移することを示唆しており、教師なし機械学習によるパターン分類や代表構造の抽出にも有効性を示唆するものである。

本研究では、Iridium 通信衛星群によって取得された AMPERE(Active Magnetosphere and Planetary Electrodynamics Response Experiment)の 10 分間隔・全球 FAC マップに対して、主成分分析(PCA)および k-means クラスタリングを適用することで、高緯度 FAC 構造の代表的な空間パターンをデータ駆動的に抽出することを目的とする。現在、データの前処理および初期的なクラスタリング解析を進めており、その結果については学会にて報告する予定である。