ポスター1:11/25 AM1/AM2 (9:15-12:35)

デジタル方式フラックスゲート磁力計開発のための入出力周波数特性の評価

#田中 颯 1), 松岡 彩子 2)

(1 京都大学 理学研究科 地球惑星科学専攻, (2 京都大学 理学研究科 地磁気世界資料解析センター

Evaluation of input-output frequency characteristics for digital-type fluxgate magnetometer

#Hayato Tanaka¹⁾, Ayako Matsuoka²⁾

⁽¹Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, ⁽²Data Analysis Center for Geomagnetism and Space Magnetism, Kyoto University

Recently the target of space exploration is expanded to the wider area in the solar system. As a result, observation instruments of wider variety are installed on a single spacecraft and the technology for the in-situ observation has been developed to design the feasible spacecraft. Digital-type fluxgate magnetometer, which is small and power-saving compared with the conventional analog-type, is more suitable for the future exploration by spacecraft, on which more various and smaller observation instruments would be installed. Meanwhile the devices and materials used for instruments on spacecraft require a high degree of reliability and must be tolerant of the severe space environment, e.g., high and low temperatures and radiation. The reliability and environment tolerance strictly restrict the available device, material and design of the instruments. A Field Programmable Gate Array (FPGA), a digital logical processor, is used for the most processing of the pickup signal from the sensor of the digital-type fluxgate magnetometer. The goal of this research is to develop the processing in the FPGA of a digital-type magnetometer with improved performance over conventional one while overcoming these limitations.

This study and development are based on the design of a digital-type fluxgate magnetometer developed for the SS-520-3 sounding rocket experiment. Since the output data from the magnetometer to the magnetic-field input depend on the frequency of the magnetic field time variation, the frequency characteristics of the response of the magnetometer should be evaluated with high accuracy. We numerically simulated and modeled the frequency characteristics and derived the overall transfer function of the digital-type fluxgate magnetometer. When the frequency response of the model was compared with the actual breadboard device designed similarly to the digital-type fluxgate magnetometer installed on the SS-520-3 sounding rocket, differences were identified. These differences are supposed to be caused by the disagreement of characteristics of the modulation process of the signal, particularly a phase detection unit. The fluxgate magnetometer modulates the AC pickup voltages into DC signals corresponding to their amplitude. In the numerical model, the phase detection unit's computations, performed in the FPGA, may not be exactly simulated by the model due to the shortage of accuracy in the numerical expression of the frequency characteristics of the modulation operations. Therefore, to conduct a more detailed comparison between the actual device and the model concerning the FPGA's operations, we established a new evaluation method. This method involves generating a simulated pickup signal within the FPGA and extracting the phase detection output. This allows us to obtain the frequency characteristics of the phase detection unit in isolation, enabling us to compare and revise the frequency characteristics of the model and the actual device for just the phase detection unit. By modifying the model based on this comparison, we aim to achieve better agreement between the frequency characteristics of the model and the actual device.

In this presentation, we will show this new evaluation method for a more detailed investigation of the frequency characteristics of the FPGA-based phase detection unit and discuss its results. Furthermore, we will discuss the suitable scheme to define the FPGA parameter design to enhance the performance of digital-type fluxgate magnetometers.

近年の探査技術の向上により、太陽系における直接探査の領域や対象が広がりつつある。これに伴い、一つの宇宙機に多種多様な観測機器を搭載する傾向にある。小型化・省電力化したデジタルフラックスゲート磁力計は、観測機器の増加、小型化の進む近年の宇宙機での観測に適している。しかし、宇宙機に搭載する機器で使用する部品には高度な信頼性が要求され、また熱や放射線等の過酷な宇宙環境に耐える必要があることから、設計は制約を受ける。デジタル方式のフラックスゲート磁力計では、デジタル演算素子の Field Programmable Gate Array (FPGA) でピックアップ信号の処理の大半を行う。この制約を克服しつつ、従来よりも性能を向上させたデジタル方式の磁力計における FPGA 演算を開発することが本研究の最終的な目標である。

本研究では観測ロケット SS-520-3 号機に搭載されたデジタル方式フラックスゲート磁力計の設計をベースに検討と開発を行う。磁場の入力に対する磁力計の出力の振幅や時間遅れは磁場変動の周波数に依存するため、入力信号に対する出力信号の応答の周波数特性を精度よく評価することが求められる。そこで磁力計の伝達関数を計算機でシミュレーションして求め、周波数特性をモデル化した。そしてこの周波数特性モデルを SS-520-3 号機搭載デジタル方式フラックス

ゲート磁力計と同じ設計を持つ試験機の周波数特性と比較したところ、モデルと実機の周波数特性には差異があった。この差異の要因として考えられるのが信号を変調している部分、特に位相検波部である。フラックスゲート磁力計の位相検波部では、交流のピックアップ電圧を、その振幅に対応する直流の信号に変調している。位相検波部は FPGA の内部で計算しているが、モデルでは信号を変調する演算の周波数特性が厳密な正確さで数式化できていないことが差異の原因であると考えられる。そこで、FPGA での演算について、より詳細な実機とモデルの比較を行うために新たな評価方法を考案した。この評価方法では FPGA の内部でピックアップ信号を模擬した信号を生成して、位相検波の出力を取り出す。これにより位相検波部単体の周波数特性が得られ、位相検波部に限定した周波数特性をモデルと実機の間で比較することができる。この評価方法によりモデルを修正することで、モデルと実機の周波数特性の一致をはかる。

今回の発表においては FPGA による位相検波部の周波数特性をより詳細に検討するため新たに構築した評価方法を提示し、その結果を考察する。また、デジタル方式フラックスゲート磁力計の性能を向上させるための、FPGA コーディングにおけるパラメータ設計を検討する。