ポスター3:11/26 PM2/PM3 (14:50-18:25)

太陽・惑星電波望遠鏡 IPRT の広帯域系開発・更新状況

#三澤 浩昭 $^{1)}$, 土屋 史紀 $^{2)}$, 山口 洋成 $^{2)}$, 桑山 陽次 $^{3)}$, 北 元 $^{4)}$, 氏原 秀樹 $^{5)}$, 佐藤 愼也 $^{1)}$ $^{(1)}$ 東北大学, $^{(2)}$ 東北大学, $^{(3)}$ 東北大学, $^{(4)}$ 東北工業大学, $^{(5)}$ 立命館大学

Current status of update of the wideband system for the Iitate Solar/Planetary Radio Telescope (IPRT)

#Hiroaki MISAWA¹⁾, Fuminori TSUCHIYA²⁾, Hiroshige YAMAGUCHI²⁾, Yoji KUWAYAMA³⁾, Hajime KITA⁴⁾, Hideki UJIHARA⁵⁾, Shinya SATO¹⁾

⁽¹Tohoku Univ., ⁽²Tohoku Univ., ⁽³Tohoku Univ., ⁽⁴Tohoku Inst. Tech., ⁽⁵Ritsumeikan Univ.

We have operated the Iitate Solar/Planetary Radio Telescope (IPRT) for meter-wave radio observations. Currently, we are updating the feed system and spectroscopic system of IPRT in preparation for further wideband, high-sensitivity, and high-resolution measurements. The current receiver system incorporates a narrow-band high-sensitivity system centered at 325 MHz and a wide-band spectroscopic system for the 150-500 MHz band including the feed system independently. However, in particular, the latter had weaknesses of low sensitivity, with an average aperture efficiency η of only about 0.2 across the measurement band, and a rapid decline in η below 200 MHz, making it difficult to receive solar radio waves in the low frequency band, which is important for research on SEP origins. In recent years, large-scale radio observation facilities in the low-frequency range have been updated and developed (such as μ GMRT and SKA), and international VLBI projects using IPRT as a pair station have also been launched. Therefore, improving η of the wide-band system is important for IPRT to make further contributions. Then we have begun developing a new 100-700 MHz band feed system and spectroscopic system that integrates high-sensitivity and wide-bandwidth systems and aims to achieve wide-bandwidth and high aperture efficiency (target: $\eta > 0.4$ across the entire measurement band).

Regarding the feed system, we have conducted design studies using electromagnetic field analysis software Feko with a pyramidal sinuous antenna as a candidate. We have also fabricated a small-scale model and evaluated its characteristics by mounting it on the IPRT, confirming that an efficiency of $\eta > 0.5$ is achievable across the entire measurement bandwidth. Currently, further studies are being conducted to achieve the durability required for the actual equipment and high impedance matching with the downstream signal amplification system, which is essential for achieving high η . Meanwhile, for the spectrometer, we are developing the hardware for the receiver and the software for the spectrometer with the goal of realizing a spectrometer capable of real-time continuous measurement of two polarizations (horizontal and vertical polarization or right-handed and left-handed polarization) in the 100-700 MHz band with a time resolution of 10 msec and a frequency resolution of 75 kHz. In the presentation, we will introduce the details and progress of the development and updates of both systems, which are targeted for completion by fiscal year 2025.

東北大学では物理開口面積が 1000 平米強のメートル波帯電波観測用の太陽・惑星電波望遠鏡 IPRT(Iitate Planetary Radio Telescope) を運用してきたが、現在、近未来の広帯域・高感度・高分解計測に向けて、フィード系の開発と分光系の開発・更新を進めている。現行の IPRT の受信系は、325MHz 中心の狭帯域高感度系と 150-500MHz 帯用の広帯域分光系をフィード系も含めて独立して備えているが、特に後者では計測帯域平均の開口効率 η が 0.2 程と低感度であること、特に 200MHz 以下では η が急速に低下し、SEP 起源の研究等で重要な低周波数帯での電波受信が困難であること等、弱点があった。近年は低周波数域での大型電波観測装置の更新や開発 (μ GMRT や SKA 等) が進み、IPRT をペア局とした国際 VLBI プロジェクトも始動しており、IPRT の一層の貢献に向け、広帯域系の高効率化が重要になってきている。そこで、当グループでは、高感度系と広帯域系を統合、且つ、広帯域化・高開口効率化を目指す、新たな 100-700MHz 帯用フィード系と分光系の開発に着手している (目標: 全計測帯域で開口効率 0.4 以上)。

フィード系については、これまで角錐型 Sinuous アンテナを候補として電磁界解析ソフト Feko での設計検討を行い、一つの設計解について小スケールモデルの製作と IPRT へ搭載した特性評価を行い、全計測帯域で開口効率 0.5 以上が実現可能であることを確認した。現在、実機に求められる耐久性と、高開口効率実現に必須となる後段の信号増幅系との高インピーダンス適合性の実現を目指し、更に検討を進めている。一方、分光系については、100-700MHz 帯の 2 偏波 (水平・垂直偏波 または 右旋・左旋偏波) を、時間分解能 10msec、周波数分解能 75KHz で実時間連続計測可能な分光系の実現を目指し、受信計のハードウェアと分光計のソフトウェア開発を進めている。講演では、何れも 2025 年度内の実現を目標としている両系について、開発・更新の詳細と進捗状況について紹介する。