C会場: 11/25 PM1(13:45-15:45)

13:45~14:00:00

次世代太陽風観測装置の開発状況と太陽風観測への応用

#岩井 一正 1), 藤木 謙一 1)

(1 名古屋大学) 宇宙地球環境研究所

Development Status of the Next-Generation Solar Wind Observation System and Its Application to Solar Wind Studies

#Kazumasa Iwai¹⁾, Ken'ichi FUJIKI¹⁾
(¹ISEE, Nagoya University

Coronal mass ejections (CMEs) and high-speed solar wind streams released from the Sun cause significant disturbances in the near-Earth space environment. These disturbances lead to geomagnetic storms and variations in the radiation environment, thereby affecting satellites and ground-based infrastructures. To understand and predict such space weather phenomena, it is essential to grasp the solar wind structures over a wide region from the Sun to the Earth. Interplanetary scintillation (IPS) observations, which utilize the scintillation of radio waves from distant radio sources caused by the solar wind, have a long history as a unique method that enables wide-field and continuous monitoring of solar wind speed and density irregularity. The Institute for Space – Earth Environmental Research (ISEE) at Nagoya University has operated dedicated IPS observation systems for more than 50 years, continuously supporting international heliospheric and space weather studies. However, aging instruments and limitations in observational capability have become major issues, and the establishment of a next-generation observation system is urgently required. To advance heliospheric research and improve space weather forecasting accuracy, we are promoting the development of a next-generation solar wind observation system at 327 MHz, and here we report its recent progress.

One of the most significant achievements in the past year has been the progress in the digital backend system. The design study has been completed, and the system has been ordered. To reduce development costs, the frequency resolution was changed from the initially planned 12.25 kHz to 24.5 kHz, which has been confirmed to have negligible impact on IPS observations. The system will be able to digitize 256 input channels simultaneously and form eight beams. Moreover, it can be combined with the existing 64-channel digital backend to form a 320-channel digital beamformer. On the other hand, it was found that the design of the antenna and receiver system needs to be reconsidered, and we are currently conducting component studies and optimization. We are also exploring industry – academia collaboration with a communications equipment company to accelerate the system development.

Regarding the operation of existing IPS systems, operational efficiency has reached nearly 100% since 2024, and IPS observations during major solar activity events have been largely successful. For instance, the IPS observation of the May 2024 CME event was successful, and its scientific analysis is now being prepared for publication. In addition, IPS data were obtained during the large flare event in October 2024, and the possibility of CME detection is under investigation. Future efforts will include compiling a catalog of major events and performing comparative analyses with magnetohydrodynamic (MHD) simulations to improve the accuracy of solar wind propagation forecasts. As part of the infrastructure development for collaborative research using the IPS data, a prototype of a new NetCDF-based data format has been developed and is already being utilized in research applications.

Meanwhile, radio frequency interference (RFI) has recently become an increasingly serious issue for IPS data. The presence or absence of RFI significantly affects the quality of raw data, and this has been identified as a critical challenge for the stability of future observations. For the next-generation system, it is essential to incorporate receiver designs and signal-processing techniques that take RFI into account, which will become key elements in the forthcoming development.

太陽から放出されるコロナ質量放出(CME)や高速太陽風は、地球近傍の宇宙環境に大きな擾乱をもたらし、磁気嵐や放射線環境の変化を通じて人工衛星や地上インフラに影響を及ぼす。このような宇宙天気現象の理解と予測のためには、太陽から地球に至る広い領域における太陽風構造の把握が不可欠である。遠方天体からの電波シンチレーションを利用する惑星間空間シンチレーション(IPS)観測は、広視野かつ連続的に太陽風速度や密度擾乱をモニタリングできる手法として長い歴史を有している。名古屋大学宇宙地球環境研究所では、IPS 観測専用の独自の電波観測装置群を展開し、50年以上にわたり太陽風の観測を継続してきた。これにより国際的に太陽圏研究や宇宙天気研究を支えてきたが、既存装置の老朽化や観測性能の制約が課題となっており、次世代観測体制の整備が急務である。本研究では太陽圏研究の発展と宇宙天気予報の精度向上を目的として、327 MHz 帯における次世代 IPS 観測装置の開発を推進しており、その進捗を報告する。

本年度に入り、特に大きな進展があったのはデジタルバックエンド系統である。設計検討を完了し、発注に至った。コ

スト削減のため周波数分解能を当初予定の 12.25 kHz から 24.5 kHz に変更したが、IPS 観測には大きな影響を与えないことが確認された。完成後は 256 チャネルの入力信号を同時にデジタル化し、8 ビームを合成できる。さらに既存の 64 チャネルデジタルバックエンドと連結することが可能で、合計 320 チャネルのデジタルビームフォーマーを構成できる。一方、アンテナおよび受信系については当初設計から再検討が必要と判明し、現在は要素検討と最適化を進めている。また、通信機器企業との共同研究も視野に入れ、産学連携による装置開発の加速も模索している。

既存装置の観測運用に関しては、2024 年以降の運用効率はほぼ 100 %に達し、顕著な太陽活動イベント時の IPS 観測も概ね成功している。たとえば 2024 年 5 月の CME イベントでは IPS 観測に成功し、現在論文化を進めている。また、2024 年 10 月の大規模フレア期間にも IPS 観測データを取得しており、CME 検出の可能性が期待される。今後は顕著イベントのリスト化や MHD シミュレーションとの比較解析を進め、太陽風伝播予測の精度向上を目指す。さらに、これらのデータを用いた共同利用研究を支える基盤整備として、新しいデータフォーマット(NetCDF 形式)の試作も進められており、研究への活用が始まっている。一方で近年、観測データへの電波干渉(RFI)の影響が顕著になりつつある。実際に RFI の有無によって生データの品質が大きく変化することが確認されており、今後の観測安定性にとって重要な課題である。次世代装置には RFI を考慮した受信系設計や信号処理技術の導入が必須であり、今後の開発における重要な要素となると考えられる。

C会場: 11/25 PM1 (13:45-15:45)

14:00~14:15:00

観測に基づく CME 磁束推定による太陽圏 MHD モデルでの地球到達時刻予測不確 実性の評価

#磯貝 拓史 $^{1)}$, 岩井 一正 $^{2)}$, 塩田 大幸 $^{3)}$, 藤木 謙一 $^{2)}$ $^{(1)}$ 名大, $^{(2)}$ 名古屋大学, $^{(3)}$ 情報通信研究機構

Evaluation of Uncertainty in CME Arrival-Time in SUSANOO Using Observation-Based CME Magnetic Flux Estimation

#Hirofumi ISOGAI¹⁾, Kazumasa IWAI²⁾, Daikou SHIOTA³⁾, Ken'ichi FUJIKI²⁾ (¹Graduated school of science, Nagoya univ., ⁽²Nagoya univ., ⁽³NICT

Coronal Mass Ejections (CMEs) are eruptions of plasma and magnetic fields into interplanetary space during solar events. When a CME with a strong southward magnetic field reaches Earth, it can cause geomagnetic disturbances and affect infrastructures such as communication and power systems. Predicting CME arrival is therefore essential, and magnetohydrodynamic (MHD) simulations are widely used. However, these models suffer from uncertainties because errors in initial conditions from solar observations directly affect forecasts.

Several studies have examined arrival-time uncertainty from initial conditions (Pizzo et al., 2011; Mays et al., 2015; Riley et al., 2018), but the magnetic flux Φ , which strongly controls propagation speed, has been insufficiently investigated. In this study, we used the heliospheric MHD model SUSANOO-CME (Shiota & Kataoka, 2016) to perform ensemble simulations by varying CME initial speed, size, magnetic flux, and speed of ambient solar wind independently. We quantified changes in arrival time due to magnetic flux and its dependence on other variables. We also introduced a parameter diagram listing combinations of initial conditions and the corresponding arrival times.

Since remote measurement of coronal magnetic fields is challenging, there is no consensus on how to determine Φ . We estimated CME flux from correlations among soft X-ray flux, flare fluence, and photospheric magnetic fields in flare regions (Kazachenko et al., 2017; Gopalswamy et al., 2018c), and then simulated CMEs associated with C-, M-, and X-class flares. Using these results and the parameter diagram, we evaluated arrival-time differences caused by flux estimation errors under different initial conditions. The results show that the impact of flux on arrival time is comparable to other parameters and becomes stronger with slow ambient solar wind or low CME speed.

For a better determination of Φ , it is necessary to consider the relationship between the photospheric flux and the flux supplied to CMEs. This issue will be discussed in this presentation. Calculating coronal magnetic fields with MHD models is also considered effective. However, the method proposed in this study, combining correlation analysis and parameter diagrams, is expected to enable faster CME forecasting by minimizing numerical simulations of active-region magnetic fields and CME propagations.

コロナ質量放出(CME)は、太陽面爆発に伴う大規模なプラズマと磁場の惑星間空間への放出現象である。CMEが強い南向き磁場を伴って地球へ到来すると、磁気圏擾乱を通じた通信・電力インフラなどへの影響が懸念される。したがって、CMEの地球到来予測は重要であり、現在は磁気流体力学(MHD)シミュレーションが広く利用されている。しかし、これらのモデルでは太陽観測に基づき与えられる初期条件に含まれる誤差が予報結果に直結し、無視できない不確実性を生じる点が課題である。

これまでにいくつかの初期条件に関する到達時刻不確実性の調査が行われてきた (Pizzo et al., 2011; Mays et al., 2015; Riley et al., 2018)。しかしながら、CME モデルに与える磁束Φは伝搬速度を大きく左右する変数にも関わらず、十分に調査されていない。本研究では、太陽圏 MHD モデル SUSANOO-CME (Shiota & Kataoka, 2016) を用い、CME の初速度、空間サイズ、磁束および背景太陽風速度といった変数を独立に変化させたアンサンブルシミュレーションを実施し、磁束による地球到達時刻の変化およびその他変数依存性を調査した。また、初期条件の組合せと CME の地球到達時刻を一覧できるパラメータダイアグラムを導入した。

磁束のはコロナ磁場の遠隔測定が難しいことから、その決定法に統一的合意がない。そこで本研究では、フレア発生時の軟X線フラックス・フルエンスと、フレア領域に含まれる光球磁場の相関 (Kazachenko et al., 2017; Gopalswamy et al., 2018c) を用い、C/M/X クラスフレアに対応する CME 磁束を推定し、複数のシミュレーションを実施した。その結果とパラメータダイアグラムを用いて、実予報で想定される磁束推定誤差に起因する到達時刻差を異なる初期条件下で評価した。結果、磁束による到来時刻への影響は他の初期条件に匹敵し、低速な背景太陽風や CME 初速度によってはさらに増大する傾向があることが分かった。

磁束のより良い決定には、光球面での磁束と CME に供給される磁束という高度の異なる領域での関係式の再検討が必要と考えられ、本講演で併せて議論する。また、MHD によるコロナ磁場計算も有効と考えられるが、本研究で提案される、相関とパラメータダイアグラムを組み合わせた手法は活動領域磁場や CME の計算を最小限に抑えることで、迅速な CME 予報に寄与すると期待される。

C会場: 11/25 PM1 (13:45-15:45)

14:15~14:30:00

327MHz で観測された惑星間空間シンチレーションのスペクトルフィッティングに よる解析とその結果

#長島 陸冬 $^{1,2)}$, 岩井 一正 $^{2)}$, 藤木 謙一 $^{2)}$, 千葉 翔太 $^{2)}$ $^{(1)}$ 名古屋大学 理学研究科, $^{(2)}$ 名古屋大学 宇宙地球環境研究所

Analysis of interplanetary scintillation observed at 327 MHz by spectral fitting and its results

#Rikuto Nagashima^{1,2)}, Kazumasa IWAI²⁾, Ken'ichi FUJIKI²⁾, Shota CHIBA²⁾ (¹Nagoya University, ⁽²Institute for Space-Earth Environmental Research

The Sun constantly emits a stream of plasma known as the solar wind, which acts as a background field that transports the effects of solar activity to Earth. Therefore, understanding the solar wind is an important factor in improving the accuracy of space weather forecasts. The speed of the solar wind can be measured remotely from the ground by observing how radio waves emitted from compact radio sources scatter within the solar wind. This technique is called interplanetary scintillation (IPS) observation.

Currently, Nagoya University is conducting IPS observations of the solar wind using up to three radio telescopes, and the solar wind speed is derived by cross-correlating the data from multiple stations. With this technique, it is possible to accurately measure the speed of the solar wind when a clear correlation is obtained across the antenna baselines. On the other hand, it is thought that the speed of the solar wind can be estimated even from the observation data of a single-station observation, in which case the speed is calculated as a parameter of spectral fitting. In single-station analysis, fitting is performed using a theoretical model that assumes a single velocity distribution along the line of sight. However, when multiple velocity distributions exist along the line of sight, the shape of the spectrum itself is affected, and it has been pointed out that the accuracy of velocity analysis may be lower than that of multi-station observations (e.g., Chang et al., 2019). The velocity derived from single-station observations is effective even when correlations cannot be obtained between multiple stations, so enabling single-station analysis will make it possible to supplement data that was previously missing due to the inability to obtain correlations regarding the velocity of the solar wind.

In this study, we successfully derived the solar wind velocity by performing spectral fitting on data from the antenna (SWIFT) installed in Toyokawa City, Aichi Prefecture, based on the techniques used in previous studies (e.g., Mejia et al., 2015). The derived velocities showed good agreement with those from multiple-station observations within the uncertainty range, particularly for the data from 3C273 in September 2019 and 3C48 in June 2024. However, there were also some cases where the derived velocities did not match the multiple-station observations, such as for 3C147 in July 2022, where the derived velocity was approximately 200 km/s faster than that from multiple-station observations. The accuracy of the derived velocity requires further validation by comparing it with satellite in-situ observation data, and by combining it with velocity data derived from ISEE multi-point observations using cross-correlation, it will be possible to compare the accuracy of velocity analysis using single-station and multi-station observations.

太陽からは太陽風と呼ばれるプラズマの流れが常に吹き出しており、これは太陽活動の影響を地球まで運搬する背景場として機能するため、宇宙天気予報の精度向上にあたっては太陽風の理解が重要なファクターとなる。太陽風の速度は、電波天体から放射された電波が太陽風内で散乱される様子を観測することで地上から遠隔的に測定することが可能であり、このような手法は惑星間空間シンチレーション (IPS) 観測と呼ばれる。

現在、名古屋大学宇宙地球環境研究所 (ISEE) では最大 3 局の電波望遠鏡を使用した太陽風の IPS 観測が行われており、複数局の観測データから相関を取ることで太陽風速度の算出がされている。この手法では、複数のアンテナの基線でデータの相関が取れている場合には太陽風の速度を正確に測定できる可能性がある。一方で、単局だけの観測データからでも太陽風の速度を見積もることができると考えられており、この場合にはスペクトルフィッティングのパラメータとして速度が算出される。単局での解析では視線上の速度分布が単一であるという近似を用いた理論モデルによりフィッティングが行われているため、視線上に複数の速度分布が存在する場合にはスペクトルの形状自体が影響を受け、複数局の観測よりも速度の解析精度が落ちる可能性が指摘されている (e.g. Chang et al.,2019)。単局観測により算出された速度は複数局間で相関が取れない場合にも有効であるため、単局解析を可能にすることでこれまで太陽風の速度について相関が取れずにデータが欠けていた部分を補完することができるようになる。

本研究では、愛知県豊川市に設置されたアンテナ (SWIFT) でのデータに対して、先行研究 (e.g. Mejia et al.,2015) の手法を参考にスペクトルフィッティングを行い、太陽風の速度を算出することに成功した。算出された速度については、特に 2019 年 9 月の 3C273、2024 年 6 月の 3C48 のデータで複数局観測による速度と不確かさの範囲内で一致する結果

を得られたが、一方で一致しないデータも得られており、例えば 2022 年 7 月の 3C147 では複数局観測の速度と比べて 200 km/s 程速い速度が算出されている。今回算出した速度については、衛星のその場観測のデータとの比較によりその精度を考察する余地があり、さらに ISEE の複数点観測による相互相関から算出された速度のデータを合わせることで、単極観測と複数局観測による速度解析の精度を比較することができるようになる。

C 会場 : 11/25 PM1(13:45-15:45)

14:30~14:45:00

膨張する太陽近傍太陽風中の Alfvén 波パラメトリック崩壊不安定の動径発展:温度 異方性の役割

#佐口 隼斗 $^{1)}$, 川面 洋平 $^{2)}$, 庄田 宗人 $^{3)}$, 加藤 雄人 $^{1)}$

 $^{(1)}$ 東北大大学院理学研究科地球物理学専攻, $^{(2)}$ 宇都宮大学データサイエンス経営学部, $^{(3)}$ 東京大学大学院理学系研究科地球惑星科学専攻

Radial evolution of Alfvén wave Parametric Decay Instability in the expanding near-sun solar wind: Role of Temperature Anisotropy

#Hayato Saguchi¹⁾, Yohei KAWAZURA²⁾, Munehito SHODA³⁾, Yuto KATOH¹⁾

⁽¹Department of Geophysics, Graduate School of Science, Tohoku university, ⁽²Department of Data Science and Management, Utsunomiya University, ⁽³Department of Earth and Planetary Science, School of Science, The University of Tokyo

Understanding the heating of the solar corona and the acceleration of the solar wind remains a central problem in solar physics. In the Alfvénic turbulence framework, nonlinear interactions among Alfvén waves generate turbulence and convert wave energy into heat, explaining coronal heating and solar wind acceleration. However, reduced MHD simulations that exclude compressive modes have sometimes failed to reproduce sufficient heating [e.g., Perez and Chandran 2013], motivating interest in the parametric decay instability (PDI) as a complementary mechanism [Shoda et al. 2018, 2019]. PDI causes a large-amplitude, circularly polarized Alfvén wave to decay into a backward Alfvén wave and a slow magnetoacoustic wave, thereby promoting turbulence and generating density fluctuations. Although some observational evidence of PDI has been reported [e.g., Bowen et al. 2018], the influence of temperature anisotropy on its growth rate and radial evolution is not investigated in detail. We compare the radial dependence of the maximum growth rate from 1.1 to 30 Rs (solar radii) using two dispersion relations: the classical isotropic MHD form [Goldstein 1978; Derby 1978] and an anisotropic MHD (CGL equations) that explicitly includes temperature anisotropy [Tenerani et al. 2017]. We prescribe radial profiles of plasma beta (beta), the normalized parent-wave transverse amplitude, and the anisotropy ratio, and we consider two expansion scenarios: (i) adiabatic expansion and (ii) an observation-based expansion. In the adiabatic case, the isotropic model yields a growth rate that increases with heliocentric distance, whereas the anisotropic model shows a decrease with distance. Under observation-based conditions, the anisotropic model tends to yield larger growth rates than the isotropic model due to perpendicular-temperature-dominated anisotropy; moreover, in both models, the growth rate peaks near $R \simeq 3Rs$ and then suppresses rapidly. In the case with a squared normalized parent-wave amplitude of 0.01 at the corona, a difference of approximately 0.05 ω 0 between the anisotropic and isotropic models' maximum growth rates was observed from 3 to 8 Rs. These behaviors depart from isotropic predictions and demonstrate that temperature anisotropy strongly modulates PDI effectiveness. These results underscore the need for theoretical models that include anisotropy to advance our understanding of how PDI contributes to the generation of density fluctuation and turbulent heating. Combined with recent multi-spacecraft observations, our findings offer new guidance for identifying PDI in situ and refining physics-based models of solar wind formation.

太陽コロナから太陽風へと至る過程での加熱・加速機構の解明は、太陽物理学における中心的課題の一つである。近年 注目されている Alfvén 乱流モデルでは、Alfvén 波どうしの相互作用により乱流が形成され、波動のエネルギーがエネ ルギーカスケードを介して熱へと変換されることでコロナ加熱や太陽風加速が説明されてきた。しかし、圧縮性がない Reduced MHD シミュレーションでは十分な加熱量を再現できないという報告もあり [e.g., Perez and Chandran 2013]、そ の補完的役割としてパラメトリック崩壊不安定性 (Parametric Decay Instability: PDI) の寄与が提案されている [Shoda et al. 2018, 2019]。PDI は大振幅の円偏波 Alfvén 波が崩壊し、逆向きの Alfvén 波とスロー磁気音波を生成する不安定性で あり、乱流形成や密度擾乱の生成に関与すると考えられている。近年の観測でも PDI の観測的兆候が報告されつつある が [e.g., Bowen et al. 2018]、成長率や動径発展における太陽近くでの温度異方性の影響は十分に理解されていない。 本 研究では、従来の等方的な MHD から導かれる分散関係式 [Goldstein 1978, Derby 1978] に加え、温度異方性を考慮した MHD である CGL 方程式から得られる分散関係式 [Tenerani et al. 2017] を用い、1.1Rs から 30Rs(Rs は太陽半径)に至 る領域において PDI 最大成長率の動径距離依存性を比較検討した。計算にはプラズマベータ、親波の規格化振幅、温度 異方性の動径プロファイルを与え、断熱膨張シナリオおよび観測ベースの膨張シナリオの二種類を想定した。その結果、 断熱膨張シナリオでは、等方モデルの最大成長率が太陽からの距離とともに増加するのに対し、異方モデルでは逆に減少 傾向を示した。また、観測ベースの膨張条件下では、等方モデルに比べて異方モデルの方が垂直優位な温度異方性により 最大成長率が大きい傾向を示した。また、R ~ 3Rs 付近で最大値を取り、その後は急激に減衰する特徴が異方モデルと等 方モデルの両方で確認された。コロナでの親波の規格化振幅の二乗値が 0.01 の結果では異方モデルと等方モデルの最大 成長率の差として約 $0.05~\omega_-0$ が3Rs-8Rs で確認された。これらの結果は従来の等方的モデルに基づく予測とは異なり、 温度異方性が PDI の有効性に強く影響することを示唆している。以上の結果は、PDI が密度擾乱生成や乱流加熱に果た す役割の理解を進める上で、温度異方性を考慮した理論モデルの必要性を示唆した。本研究は、近年の探査機観測データ と組み合わせることで、太陽風形成過程の理解や PDI の観測的同定に新たな視座を与えるものと期待される。

C 会場 : 11/25 PM1(13:45-15:45)

14:45~15:00:00

#成行 泰裕 ¹⁾ ⁽¹ 富山大

On approximation of time correlations in anisotropic magnetohydrodynamic turbulence

#Yasuhiro NARIYUKI¹⁾
(1 University of Toyama

Standard statistical theories of turbulence such as the direct interaction approximation [e.g., Kraichnan, 1959; Nakayama, 1999] can give evolution equations for time correlation. By solving those equations analytically or numerically, we obtain approximate solutions for time correlations in turbulence. In this presentation, we revisit such equations (integro-differential equations) for time-correlation in anisotropic magnetohydrodynamic turbulence [e.g., Nakayama, 1999,2002] and discuss dependence of approximate solutions on each term and parameters. We also discuss the application of approximate solutions to sub-grid scale modeling of local turbulence.

C 会場 : 11/25 PM1(13:45-15:45)

15:00~15:15:00

#坪内 健 ¹⁾ ⁽¹ 電通大

Rankine-Hugoniot equations in anisotropic plasmas: Application to the heliospheric termination shock

#Ken Tsubouchi1)

(1The University of Electro-Communications

The compression ratio, defined as the density jump across a shock, is a key parameter characterizing shock properties. In the fluid description, the Rankine – Hugoniot (RH) relations enforce conservation of mass, momentum, and energy, while Maxwell's equations ensure continuity of the tangential electric field and normal magnetic field. These constraints allow the compression ratio to be expressed in terms of upstream parameters such as Mach number and plasma beta. Using hybrid simulations including pickup ions (PUIs) to model the heliospheric termination shock, we find that the observed compression ratio is systematically lower than predicted by the standard RH relations, indicating a breakdown of their underlying assumptions. To address this, we incorporate plasma pressure anisotropy by treating pressure as a tensor rather than a scalar, and we modify the flux formulations for momentum and energy accordingly. Employing the Chew – Goldberger – Low (CGL) approximation to close the system, we derive new expressions for the compression ratio and pressure anisotropy. The resulting solutions show excellent agreement with simulation results when solar wind protons and PUIs are treated as a single fluid, demonstrating the validity of the anisotropic RH framework for shocks in space plasmas.

ポスター3:11/26 PM2/PM3 (14:50-18:25)

2022 年 6 月 13 日に発生した II 型太陽電波バーストの変調に対応する CME 伝搬環境について

#金野 直人 $^{1)}$, 加藤 雄人 $^{1)}$, 熊本 篤志 $^{1)}$, 岩井 一正 $^{2)}$, 三澤 浩昭 $^{1)}$ $^{(1)}$ 東北大学大学院理学研究科地球物理学専攻, $^{(2)}$ 名古屋大学宇宙地球環境研究所

CME Propagation Environment for Type II Solar Radio Bursts Modulation on June 13, 2022

#Naoto KINNO¹⁾, Yuto KATOH¹⁾, Atsushi KUMAMOTO¹⁾, Kazumasa IWAI²⁾, Hiroaki MISAWA¹⁾
⁽¹Department of Geophysics, Graduate School of Science, Tohoku University, ⁽²ISEE, Nagoya University)

Coronal mass ejection (CME) is a phenomenon in which a large mass of plasma is ejected from the solar surface into interplanetary space due to active solar activity. MHD shock waves produced by CME accelerate ambient plasma particles and type II solar radio bursts (SRB II) are excited [e.g., Uchida 1960]. By analyzing time variation of emission frequency of SRB II propagating at the speed of light, velocity of CME shock waves, density structure of the solar corona, and magnetic field structure can be estimated before CMEs reach the earth [e.g., Koval et al. 2021, 2023, 2024]. However, actual coronal environment is complex, and effects of inhomogeneous density and magnetic field structure around radio emission sources are not well understood. In particular, radio source region in the HF-VHF band (3 - 300 MHz) corresponds to the transition region from the solar corona to interplanetary space, where density gradients and magnetic field structures change drastically. Therefore, it is important to understand the environment of the solar corona from SRB observations. However, SRB II observations in this frequency band are limited, and understanding CME propagation and SRB excitation mechanisms in the middle corona remains a challenge in solar physics.

In this study, we analyzed in detail CME/Flare erupted at 03:12 UT on June 13, 2022, and associated SRB II event on 03:25:40-03:33:00 UT with a couple of radio observation data (Iitate Jupiter Galaxy Radio Observatory HF band antenna (15-40 MHz) [Kumamoto et al. IUGONET workshop, 2011]; IPRT/AMATERAS (100-500 MHz) [Iwai et al. 2012]). In 25-37 MHz, SRB II emission lane appeared, and it was second harmonic. In the harmonic emission lane, frequency drift rate (FDR) corresponding to peak flux increased sharply by a factor of 1.67-1.92 after 03:28:45 UT. To further examine this phenomenon, we analyzed environmental conditions of the corona near the solar surface for this event using image observation data. We found that this event had following characteristics:

- 1. Through two coronagraphs analysis, MLSO/K-Cor (1.1-3.0Rs) [K-Cor Team 2013] and SOHO/LASCO-C2 (3.0-6.0Rs), it showed that the CME erupted at around 03:12 UT at AR13030/13032 (including N21E44) and propagated eastward.
- 2. By analyses of SDO/AIA [Lemen et al., 2012], HMI [Scherrer et al., 2012] and PFSS magnetic field model, it is shown that closed magnetic field lines were observed from the CME source region and a coronal hole accompanied by open magnetic field lines were also observed in its vicinity.
- 3. We analyzed magnetic field azimuth angle using Stokes parameters observed by MLSO/UCoMP (1.03 to 1.95Rs) [Landi et al., 2016]. We used observation data at 03:06:51 UT before the CME generation and at 03:36:50 UT when CME was outside the field of view of UCoMP. We subtracted former data from latter data, and it was found that north part of magnetic field of the CME propagation path rotated clockwise up to 30 degrees. This indicates that in this time period CME may have interacted with streamer region which was formed by open magnetic field lines extending from the coronal hole on the north side of the CME propagation path.

As a generation process of electron beam producing SRB II, shock drift acceleration is considered. This is the mechanism of electron acceleration under quasi-perpendicular conditions between CME shock waves and coronal magnetic field. Accelerated electrons excite Langmuir waves, and SRB II is excited through non-linear mode conversion [e.g., Holman and Pesses 1983; Melrose 1991; Ball and Melrose 2001]. Based on this generation scenario, the spectral feature in this SRB II event, and the observation results of 1-3 mentioned above, it is considered that the observed change in FDR was caused by different magnetic field structure along the CME propagation path. At first, CME shocks waves passed through closed magnetic field lines above the active region, and as propagating, they passed through open magnetic field lines above the coronal hole. And then, the radio source region or wave mode conversion efficiency may have changed [e.g., Kong et al. 2012; Zhang et al. 2024].

In this presentation, based on the analyses, we consider changes of magnetic field and density structures along the CME propagation path and discuss their elementary processes. Also, we discuss the spectral structure and the interaction between CME shock wave and coronal magnetic field structures.

コロナ質量放出 (CME) は活発な太陽活動の影響により、太陽表面から大規模なプラズマの塊が惑星間空間へ放出される現象である。CME が生み出す MHD 衝撃波の伝搬により、II 型太陽電波バースト (SRB II) がプラズマ周波数で発生する [e.g. Uchida 1960]。光速で伝搬する SRB II の放射周波数の時間変化を解析することで、CME の地球到達前に CME 衝撃波の速度や太陽コロナの密度構造、磁場強度を推定できる [e.g., Koval et al. 2021, 2023, 2024]。しかし、実際のコロ

ナ環境は複雑であり、密度・磁場構造の不均一性が電波放射源周辺のプラズマ環境に与える影響は十分に理解されていない。特に HF-VHF 帯域 (3 – 300 MHz) の電波放射源領域は太陽コロナと惑星間空間の境界付近に相当し、密度勾配や磁場構造が大きく変動する。そのため、SRB 観測から太陽近傍のコロナ環境を理解することが重要であるが、この周波数帯域における SRB II 観測例は限られており、Middle corona での CME 伝搬および SRB 発生機構の解明は太陽物理学の課題となっている。

本研究では、複数の電波観測データ (飯舘木星銀河電波観測所 HF 帯アンテナ (15-40 MHz) [Kumamoto et al. IUGONET workshop, 2011]; IPRT/AMATERAS (100-500 MHz) [Iwai et al. 2012]) を用いて、2022 年 6 月 13 日 03:12UT に発生した CME/Flare と、それに付随する SRB イベントを詳細に解析した。03:25:40-03:33:00UT に CME に付随する SRB II の 2 倍高調波を 25-37 MHz で観測した。高調波の放射レーンでは、03:28:45UT を境にして電波放射強度のピークに対応する周波数ドリフト率 (FDR) が 1.67-1.92 倍へと急激に増加していた。次に、画像観測データを用いて SRB II 発生時刻付近の太陽表面を解析したところ、このイベントは以下の特徴があることが分かった。

- 1. MLSO/K-Cor (1.1-3.0Rs) [K-Cor Team 2013], SOHO/LASCO-C2 (3.0-6.0Rs) の 2 つのコロナグラフの解析から, 該当する CME は 03:12UT ごろに AR13030/13032 (N21E44 付近) で発生し、東方向に伝搬していた.
- 2. SDO/AIA [Lemen et al., 2012], HMI [Scherrer et al., 2012] と PFSS 磁場モデルを解析したところ, CME 発生領域からは閉じた磁力線が確認できた。また, その近傍にはコロナホールがあり, 開いた磁力線が伸びていた.
- 3., MLSO/UCoMP (1.03 to 1.95Rs)[Landi et al., 2016] で CME 発生前の 03:06:51UT と UCoMP 視野外への伝搬後の 03:36:50UT に観測した Stokes パラメータを用いて磁場の角度を解析した.上記の時間においてデータの差分を取った ところ,CME 伝搬後に伝搬経路北側の磁場が最大 30 度ほど時計回りに回転していたことがわかった.これは,コロナホールから延びていた開いた磁力線が CME 伝搬経路の北側に形成していたストリーマ領域と CME がこの時間帯に作用 した可能性を示している.

SRB II を発生させる電子ビームの生成メカニズムとして衝撃波ドリフト加速が考えられている。これは CME 衝撃波とコロナ磁場が quasi-perpendicular の条件下で衝撃波ドリフト加速によって電子が加速され、Langmuir 波を励起し、それが非線形モード変換することで SRB II が発生する、というものである [e.g., Holman and Pesses 1983; Melrose 1991; Ball and Melrose 2001]。この生成説と観測された SRB II の出現特徴および上記の 1~3 の観測結果を勘案することにより、観測された FDR の変化は、CME 伝搬経路上の磁場構造が活動領域上空の閉じた磁力線からコロナホール上空の開いた磁力線に変化したことで電波発生領域や電波変換効率が変化した結果であると考えられる [e.g., Kong et al., 2012; Zhang et al., 2024]。本発表では、解析結果に基づく CME 伝搬経路上の磁場構造の変化を示し、スペクトル構造を決定する物理素過程ならびに CME 衝撃波とコロナ磁場構造の相互作用について考察する.

#藤木 謙一 ¹⁾, 岩井 一正 ²⁾ (1 名古屋大学, ⁽² 名古屋大学

Reliability Assessment of Solar Wind Speeds Derived from IPS Observations

#Kenichi Fujiki¹⁾, Kazumasa IWAI²⁾
⁽¹Nagoya University, ⁽²Nagoya University)

Radio waves from distant sources are scattered by solar wind plasma, producing intensity fluctuations observed on the ground. This phenomenon, known as interplanetary scintillation (IPS), offers an effective means for remotely sensing the solar wind. Although IPS data contain line-of-sight (LOS)-integrated information on the solar wind, tomographic analysis applied to a large number of observations can mitigate this integration effect and reconstruct the global solar wind distribution

Since the early 1970s, Nagoya University has been conducting continuous IPS observations, revealing long-term variations in the large-scale solar wind structure. These variations exhibit a strong correlation with solar activity. On shorter timescales, however, comparisons between IPS-derived solar wind structures and in situ measurements from spacecraft show alternating periods of high and low correlation.

In recent years, the worsening radio-frequency interference (RFI) environment in Japan has seriously affected IPS observations, leading to increasing discrepancies between IPS-derived solar wind speeds and in situ measurements. The aim of this study is to evaluate the reliability of IPS-derived solar wind speeds under such conditions.

To address this issue, we used IPS data from 1995 to 2010, a period with high-quality data acquisition, and compared short-term variations in solar wind speed with those in the OMNI database. To simulate the current RFI environment, we randomly thinned LOSs, reproducing the effects of reduced observational density and increased interference. We then quantitatively assessed the consistency between IPS-derived and in situ solar wind speeds. Furthermore, we investigated how this consistency depends on several key parameters, such as the number of LOS and the level of RFI, thereby providing a basis for future improvements in IPS observations and ensuring the continued utility of IPS for solar wind monitoring.

ポスター3:11/26 PM2/PM3 (14:50-18:25)

太陽・惑星電波望遠鏡 IPRT の広帯域系開発・更新状況

#三澤 浩昭 $^{1)}$, 土屋 史紀 $^{2)}$, 山口 洋成 $^{2)}$, 桑山 陽次 $^{3)}$, 北 元 $^{4)}$, 氏原 秀樹 $^{5)}$, 佐藤 愼也 $^{1)}$ 東北大学, $^{(2)}$ 東北大学, $^{(3)}$ 東北大学, $^{(4)}$ 東北工業大学, $^{(5)}$ 立命館大学

Current status of update of the wideband system for the Iitate Solar/Planetary Radio Telescope (IPRT)

#Hiroaki MISAWA¹⁾, Fuminori TSUCHIYA²⁾, Hiroshige YAMAGUCHI²⁾, Yoji KUWAYAMA³⁾, Hajime KITA⁴⁾, Hideki UJIHARA⁵⁾, Shinya SATO¹⁾

⁽¹Tohoku Univ., ⁽²Tohoku Univ., ⁽³Tohoku Univ., ⁽⁴Tohoku Inst. Tech., ⁽⁵Ritsumeikan Univ.

We have operated the Iitate Solar/Planetary Radio Telescope (IPRT) for meter-wave radio observations. Currently, we are updating the feed system and spectroscopic system of IPRT in preparation for further wideband, high-sensitivity, and high-resolution measurements. The current receiver system incorporates a narrow-band high-sensitivity system centered at 325 MHz and a wide-band spectroscopic system for the 150-500 MHz band including the feed system independently. However, in particular, the latter had weaknesses of low sensitivity, with an average aperture efficiency η of only about 0.2 across the measurement band, and a rapid decline in η below 200 MHz, making it difficult to receive solar radio waves in the low frequency band, which is important for research on SEP origins. In recent years, large-scale radio observation facilities in the low-frequency range have been updated and developed (such as μ GMRT and SKA), and international VLBI projects using IPRT as a pair station have also been launched. Therefore, improving η of the wide-band system is important for IPRT to make further contributions. Then we have begun developing a new 100-700 MHz band feed system and spectroscopic system that integrates high-sensitivity and wide-bandwidth systems and aims to achieve wide-bandwidth and high aperture efficiency (target: $\eta > 0.4$ across the entire measurement band).

Regarding the feed system, we have conducted design studies using electromagnetic field analysis software Feko with a pyramidal sinuous antenna as a candidate. We have also fabricated a small-scale model and evaluated its characteristics by mounting it on the IPRT, confirming that an efficiency of $\eta > 0.5$ is achievable across the entire measurement bandwidth. Currently, further studies are being conducted to achieve the durability required for the actual equipment and high impedance matching with the downstream signal amplification system, which is essential for achieving high η . Meanwhile, for the spectrometer, we are developing the hardware for the receiver and the software for the spectrometer with the goal of realizing a spectrometer capable of real-time continuous measurement of two polarizations (horizontal and vertical polarization or right-handed and left-handed polarization) in the 100-700 MHz band with a time resolution of 10 msec and a frequency resolution of 75 kHz. In the presentation, we will introduce the details and progress of the development and updates of both systems, which are targeted for completion by fiscal year 2025.

東北大学では物理開口面積が 1000 平米強のメートル波帯電波観測用の太陽・惑星電波望遠鏡 IPRT(litate Planetary Radio Telescope) を運用してきたが、現在、近未来の広帯域・高感度・高分解計測に向けて、フィード系の開発と分光系の開発・更新を進めている。現行の IPRT の受信系は、325MHz 中心の狭帯域高感度系と 150-500MHz 帯用の広帯域分光系をフィード系も含めて独立して備えているが、特に後者では計測帯域平均の開口効率 η が 0.2 程と低感度であること、特に 200MHz 以下では η が急速に低下し、SEP 起源の研究等で重要な低周波数帯での電波受信が困難であること等、弱点があった。近年は低周波数域での大型電波観測装置の更新や開発 (μ GMRT や SKA 等) が進み、IPRT をペア局とした国際 VLBI プロジェクトも始動しており、IPRT の一層の貢献に向け、広帯域系の高効率化が重要になってきている。そこで、当グループでは、高感度系と広帯域系を統合、且つ、広帯域化・高開口効率化を目指す、新たな 100-700MHz 帯用フィード系と分光系の開発に着手している (目標: 全計測帯域で開口効率 0.4 以上)。

フィード系については、これまで角錐型 Sinuous アンテナを候補として電磁界解析ソフト Feko での設計検討を行い、一つの設計解について小スケールモデルの製作と IPRT へ搭載した特性評価を行い、全計測帯域で開口効率 0.5 以上が実現可能であることを確認した。現在、実機に求められる耐久性と、高開口効率実現に必須となる後段の信号増幅系との高インピーダンス適合性の実現を目指し、更に検討を進めている。一方、分光系については、100-700MHz 帯の 2 偏波 (水平・垂直偏波 または 右旋・左旋偏波) を、時間分解能 10msec、周波数分解能 75KHz で実時間連続計測可能な分光系の実現を目指し、受信計のハードウェアと分光計のソフトウェア開発を進めている。講演では、何れも 2025 年度内の実現を目標としている両系について、開発・更新の詳細と進捗状況について紹介する。

ポスター3:11/26 PM2/PM3 (14:50-18:25)

銀河宇宙線の地球近傍までの輸送過程に関する数値実験

#川野賀 大喜 $^{1)}$, 松清 修一 $^{2)}$, 大塚 史子 $^{2)}$, 吉田 光太郎 $^{1)}$ $^{(1)}$ 九大・総理工, $^{(2)}$ 九大・総理工

Numerical Simulation of the Transport process of Galactic Cosmic Rays to 1 AU

#Taiki Kawanoga¹⁾, Shuichi Matsukiyo²⁾, Fumiko Otsuka²⁾, Kotaro Yoshida¹⁾

⁽¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ⁽²Faculty of Engineering Sciences, Kyushu University

Heliosphere is formed by the interaction between the supersonic solar wind plasma and the interstellar plasma. It is characterized by structures such as the termination shock and the heliopause, and is a region dominated by the solar wind plasma and magnetic field. Galactic cosmic rays (GCRs), coming from interstellar space partially penetrate into the heliosphere, experience the influence of heliospheric structure, and undergo highly complex motion before reaching the Earth. Our goal in this study is to understand how GCRs penetrate into the heliosphere and reach the Earth at the level of particle trajectory, by combining global MHD simulations with test-particle simulations.

In this study, we performed test-particle simulations using electromagnetic field data obtained from a global MHD simulation under the assumption of a steady solar wind, in order to investigate the penetration process of GCRs into the heliosphere. In the MHD simulation, the solar wind parameters at 1 AU were set to 400 km/s (velocity), 5.0 /cc (density), 35 μ G (magnetic field strength), and 10^5 K (temperature), which were extrapolated to the inner boundary at 50 AU (from the Sun). At the outer boundary corresponding to the interstellar space (900 AU), the parameters were set to 23 km/s, 0.1 /cc, 6,300 K, and 3 μ G. While previous studies have been limited to discussions up to the inner boundary at 50 AU in global MHD simulations, here we extended the calculation domain up to 1 AU by applying the theoretical Parker spiral model inside 50 AU, and investigated the particle trajectories of GCRs. We also considered the effect of cosmic ray pitch-angle scattering due to turbulence, since the heliosphere is usually turbulent and the magnetic fluctuations are known to be comparable to the background field.

In this presentation, we focus on the trajectories of particles with Lorentz factors $\gamma=10$ (~10 GeV) and $\gamma=1000$ (~1 TeV). For $\gamma=10$ particles, it was confirmed that they are trapped by the spiral magnetic field of the heliosphere and then guided into polar current, ultimately reaching the inner boundary mainly from the polar regions of the heliosphere. For $\gamma=1000$ particles, some particles penetrated directly toward the inner boundary, while others exhibited large-scale motion in the heliosphere and eventually entered through the polar regions of the heliosphere. In particular, for $\gamma=1000$, we launched 10^{10} particles outside the heliopause and conducted large-scale simulations, enabling us to investigate their statistical behavior in relation to characteristic trajectory features.

太陽圏は太陽から噴き出す超音速の太陽風プラズマや星間プラズマとの相互作用によって形成され、終端衝撃波やヘリオポーズなどの特徴的な構造を持ち、太陽風プラズマと磁場が支配的な領域である。星間空間から飛来する銀河宇宙線は、一部が太陽圏内部まで侵入し、太陽圏構造の影響を受け、極めて複雑な運動を経験して地球まで到達する。本研究の目的は、グローバル MHD 計算とテスト粒子計算を組み合わせ、銀河宇宙線が太陽圏へどのように侵入して地球まで到達するのか、粒子軌道レベルで理解することである。

本研究では、定常太陽風を仮定したグローバル MHD 計算から得られた太陽圏の電磁場データを用いてテスト粒子計算を行い、太陽圏への銀河宇宙線の侵入プロセスを調査した。MHD 計算では、1 AU での太陽風の速度、密度、磁場の強さ、および温度を、それぞれ 400 km/s、5.0 /cc、35 μ G、 10^5 K とし、これらの値は内側境界 50 AU(太陽から 50 AU 地点)に外挿される。星間空間に対応する外側境界 900 AU での値は、それぞれ 23 km/s、0.1 /cc、6,300 K、および 3 μ G とした。これまでの研究では、グローバル MHD データの内側境界である 50 AU までの議論がなされてきたが、本研究では、50 AU 以内での領域における計算については Parker spiral の理論式を適用することにより、1 AU までの銀河宇宙線の粒子軌道について調査を行った。また、太陽圏内は通常乱流的で、磁場揺らぎと背景磁場の強度が同程度となることが知られているため、乱流場による宇宙線粒子のピッチ角散乱の効果も考慮した。

本発表ではローレンツ因子 $\gamma=10$ (~10 GeV) と $\gamma=1000$ (~1TeV) の粒子の粒子軌道について議論する。 $\gamma=10$ の到達粒子は太陽圏のスパイラル磁場に捕捉された後、極域の電流渦に引き込まれ、主に極域から内側境界へ到達することが確認された。 $\gamma=1000$ の粒子は直線的に内側境界へ到達する粒子や太陽圏内を大きく運動し、太陽圏極域から内部境界へ到達する粒子が多くみられた。特に $\gamma=1000$ の粒子については、100 億個の粒子をヘリオポーズの外側へ配置し、大規模粒子計算を行い、統計的ふるまいを粒子軌道の特徴にまで踏み込んで理解する。