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A shock wave converts the upstream bulk kinetic energy irreversibly into downstream thermal energy. While this con-
version can be described macroscopically by the conservation laws of mass, momentum, and energy (Rankine-Hugoniot
relations), the energy partition among particle species, such as ions and electrons, cannot be physically predicted in collision-
less plasmas. Previous studies have investigated the dependence of energy partition on shock parameters such as the Mach
number using observations and numerical simulations, but the details remain not fully understood (Schwartz et al. 1988;
Ghavamian et al. 2013; Raymond et al. 2023).

In collisionless shocks in space, thermal and non-thermal particle populations coexist. Observations of electron distribu-
tions downstream of Earth’s bow shock show a thermal distribution at low energies and a non-thermal power-law distribution
at high energies, which is similar to cosmic rays generated in high-energy astrophysical shocks such as supernova remnant
shocks. Understanding the energy partition between thermal and non-thermal components at Earth’s bow shock may provide
a clue for evaluating the energy conversion efficiency into cosmic ray electrons at astrophysical shocks.

In this study, we aim to understand the energy partition between ions and electrons, and further, the partition between the
thermal and non-thermal components of electrons, by analyzing in-situ spacecraft observation data from Earth’s bow shock.
A correlation between the shock’s electron temperature jump and the potential in the de Hoffmann-Teller Frame (HTF) has
been shown in previous studies (Schwartz et al. 1988; Hull et al. 2000). Therefore, in this research, we calculate the potential
defined in the HTF (hereafter referred to as shock potential) using the generalized Ohm’s law and discuss it as an indicator
of electron energy partition. We use observational data obtained by MMS (Magnetospheric Multi-Scale) spacecraft in burst
mode. We calculated the shock potential by assuming that the electron inertial term in the generalized Ohm’s law is negligible
and that the shock is one-dimensional and stationary. We find that the shock potential falls within the range of "10-100 eV.
No clear correlation was found between the shock potential and the shock parameters These results are consistent with the
previous studies (Schwartz et al. 1988, Hull et al. 2000).

Observations from Earth’s bow shock have also shown that the downstream electron distribution exhibits a “’flat-top” shape,
where the thermal distribution connects to a non-thermal power-law distribution through the so-called ”shoulder.” We have
confirmed that the shock potential coincides with the “shoulder” energy as reported previously (Schwartz et al. 1988). Based
on this result, we adopted the shock potential as the transition energy between thermal and non-thermal populations and
calculated the energy partition between them. We will discuss how the energy partition is regulated by the shock parameter
and its relation to the recent work by Lalti et al. (2024).
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