R008-19 C会場: 11/27 AM2(11:05-12:35)

11:35~11:50:00

#吉川 顕正 ¹⁾ ⁽¹ 九大・理

Beyond Surfaces: Twist and Curvature in the Skeleton Geometry of Magnetic and Fluid Fields via the Extended Frenet Frame

#Akimasa Yoshikawa1)

⁽¹Faculty of Science, Kyushu University

This study reports on a new approach to the geometrical understanding of highly complex magnetic field structures that emerge in association with the dynamics of space and fusion plasmas. The objects of investigation are vector fields defined in three-dimensional space, such as magnetic fields and fluid velocity fields. Although these can be understood within ordinary Euclidean space, it is more natural to employ the language of manifolds for their analysis. This is because coordinate systems and bases vary with position, and their changes must be described using connections and differential forms. In this sense, the analysis of vector fields in Euclidean space can be regarded as a special case of vector field analysis on manifolds. However, while mathematically elegant, this framework has often been perceived as overly abstract, offering limited physical insight for researchers in magnetospheric and fluid sciences.

Traditional approaches to the structure of three-dimensional vector fields are diverse, including the tracing of streamlines, the use of conservation laws and potentials, the computation of divergence and curl, topological classifications, dynamical-systems analysis, and visualization through numerical simulations. These methods have provided only fragmentary geometrical insights, and in particular, no systematic framework has existed for actively representing non-integrable structures. This study aims to construct a new theoretical framework based on connection 1-forms together with curvature and torsion 2-forms, establishing a geometrical foundation that captures structures consistently from local features to global configurations.

In this framework, the torsion 2-form is used to determine whether the flow of a given two-dimensional directional field is constrained to an integrable surface under parallel transport, or whether it escapes outward with twist to form a three-dimensional non-integrable structure. The curvature 2-form, on the other hand, allows one to measure quantities corresponding to the Gaussian and mean curvatures of an integral surface in the integrable case, while in the non-integrable case it quantifies the accumulation of three-dimensional rotational distortion that cannot be reduced to a surface. In this way, the torsion and curvature 2-forms serve as tools to characterize vector field structures in terms of their off-surface behavior and rotational accumulation, respectively, thus distinguishing integrable from non-integrable configurations.

The Extended Frenet Frame introduced in this study provides a novel scheme that fundamentally changes the situation. Vector fields are directly expressed in terms of geometrical quantities such as curvature and torsion of local frames, and their structures are organized according to the dichotomy of integrable versus non-integrable, including transitions and intermediate states between them. This approach makes it possible to describe integrability, previously understood only in terms of the existence or absence of integral surfaces, as a clear geometrical image of natural phenomena. In particular, magnetic reconnection and vortex generation/decay can be interpreted geometrically as transitions from "surface-constrained structures" to "three-dimensional rising structures."

Potential applications are wide-ranging, including the analysis of non-integrable magnetic structures in the magnetosphere and solar wind, the evaluation of magnetic confinement stability in fusion research, and the study of vortex and turbulence structures in fluid and atmospheric sciences. Furthermore, by directly extracting geometrical indicators from observational data and numerical simulations, this framework offers a new analytical method that bridges theory, observation, and computation. In sum, the study presents a new system of vector field geometry based on integrability, non-integrability, and their transitions, contributing to a unified understanding of complex fields in nature.

宇宙空間プラズマや核融合プラズマのダイナミクスとともに生成される高度に複雑な磁場構造の幾何学的理解に迫る新しいアプローチについて報告する。本研究で対象とするのは、3次元空間に定義された磁場や流体速度場などのベクトル場である。通常のユークリッド空間におけるベクトル場として理解できるが、解析にあたっては多様体の言葉を用いる方が自然である。なぜなら、座標系や基底は位置に依存して変化し、その変化を記述するには接続や微分形式が不可欠であるからである。したがってユークリッド空間のベクトル場解析は、多様体上のベクトル場解析の特別な場合とみなせる。しかしこの方法論は形式的には美しいものの物理的意義が曖昧であり、磁場や流体の研究者には抽象的に過ぎると受け止められてきた。

3次元ベクトル場の構造に迫る従来のアプローチは、流線の追跡、保存則やポテンシャルによる記述、発散や回転の計算、トポロジー的分類、力学系的解析、数値シミュレーションによる可視化など多岐にわたる。しかしながら、これらは断片的な幾何構造の理解を与えるに留まり、特に非可積分構造を積極的に表現する体系は存在しなかった。本研究は接続1形式と曲率・捻れ2形式を用いた新しい理論体系を構築し、局所から大局までを一貫して捉える幾何学的基盤を確立す

ることを目的とする。ここで捩れ 2 形式を用いることで、与えられた 2 次元方向場のフローが可積分面上に拘束され平行移動するのか、あるいはねじれを伴って面外へ流出し、3 次元的な非可積分構造を形成するのかを幾何学的に判定できる。また曲率 2 形式を用いることで、可積分な場合には積分曲面上のガウス曲率や平均曲率と対応する量を計測でき、非可積分な場合には曲面に還元できないフローの立体的回転の蓄積を定量化できる。すなわち、捩れ 2 形式と曲率 2 形式は、それぞれベクトル場の「面外性」と「回転蓄積」を測る道具として、可積分・非可積分双方の構造を特徴づける役割を果たす。

本研究で導入する拡張 Frenet フレームは、この状況を一変させる斬新な枠組みを提供するものである。ベクトル場を局所フレームの曲率やねじれといった幾何学的特徴で直接記述し、可積分/非可積分という二分法に基づきつつ、その相互遷移や中間状態も含めて構造を整理する。この方法により、従来「積分曲面の有無」でしか理解されなかった可積分性を、自然現象の幾何像として明確に記述できる。特に、磁気リコネクションや渦の生成・崩壊を「曲面に落ちる構造」から「立体的に立ち上がる構造」への遷移として幾何学的に捉えることが可能となる。

応用的展開としては、宇宙物理学における磁気圏や太陽風の非可積分的磁場構造、核融合研究における磁場閉じ込めの安定性評価、流体や大気科学における乱流や大規模循環の渦構造など、広範な対象に及ぶ。また観測データや数値シミュレーションから幾何学的指標を直接抽出することで、理論と観測・数値を結ぶ新しい解析手法を提供する。本研究は、可積分性/非可積分性とその遷移を基盤とするベクトル場幾何の新体系を提示し、自然界における複雑な場の統一的理解に寄与するものである。