ポスター2:11/25 PM1(13:45-15:45)

非定常衝撃波の大型レーザー実験

#高橋 佳夏 $^{1)}$, 松清 修一 $^{1)}$, 諌山 翔伍 $^{1)}$, 佐藤 弓真 $^{1)}$, 森田 太智 $^{1)}$, 山崎 了 $^{2)}$, 田中 周太 $^{2)}$, 竹崎 太智 $^{3)}$, 富田 健太郎 $^{4)}$, 境 健太郎 $^{5)}$, 蔵満 康浩 $^{6)}$, 佐野 孝好 $^{7)}$, 坂和 洋一 $^{7)}$

 $^{(1)}$ 九大・総理工 $^{(2)}$ 青山学院大・理工 $^{(3)}$ 富山大 $^{(4)}$ 北海道大 $^{(5)}$ 核融合研 $^{(6)}$ 阪大・工・電気 $^{(7)}$ 阪大・レーザー研

High-power laser experiment of nonstationary collisionless shock

#Kana Takahashi¹⁾, Shuichi Matsukiyo¹⁾, Shogo Isayama¹⁾, Yuma Sato¹⁾, Taichi Morita¹⁾, Ryo Yamazaki²⁾, Shuta Tanaka²⁾, Taichi Takezaki³⁾, Kentaro Tomita⁴⁾, Kentaro Sakai⁵⁾, Yasuhiro Kuramitsu⁶⁾, Takayoshi Sano⁷⁾, Youichi Sakawa⁷⁾

(¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, (²Faculty of Engineering Sciences, Aoyama Gakuin University, (³Toyama University, (⁴Hokkaido University, (⁵National Institute for Fusion Science, (⁶Department of Electrical Engineering, Graduate School of Engineering, Osaka University, (⁷Institute of Laser Engineering, Osaka University

Collisionless shocks play an essential role as energy converters in space and are considered promising candidates for cosmic ray accelerators. However, many aspects of their fundamental structure remain unresolved. It is known that supercritical shocks with high Mach numbers often fail to maintain a steady shock front. Empirical studies of non-stationary shocks have traditionally been conducted through in-situ observations using artificial satellites. Because such observations are restricted to limited sampling points, it is difficult to directly capture shock front fluctuations. Instead, it is important to remotely detect the temporal variations of physical quantities, reflecting the fluctuations of the shock surface near the wave front. In contrast, recent laboratory experiments on collisionless shocks enable us to continuously capture the spatiotemporal evolution of the shock, making it possible to measure shock front fluctuations directly.

In the experiments, a laser is irradiated onto a solid target inside a chamber filled with dilute gas. The irradiation instantaneously ionizes both the gas and the target, and the target plasma compresses the gas plasma to generate a shock. Furthermore, by using Helmholtz-type coils, we realized conditions in which the gas plasma is magnetized under an externally applied magnetic field.

In the 2024 experiments, helium gas and carbon target were used, with variations in gas pressure and external magnetic field strength. Self-emission streak measurements were employed to capture the time evolution of emission from plasma passing through a linear slit aligned with the shock propagation direction. By analyzing the spatial profile of emission intensity along the slit and identifying the location of maximum gradient as the shock surface, we found that the gradient periodically varies in time. The period was on the order of the inverse ion cyclotron frequency.

In the 2025 experiments, we will focus on how the amplitude of shock front fluctuations changes with shock velocity (Mach number). In the presentation, we will discuss these issues together with new experimental data to be obtained in September.

無衝突衝撃波は宇宙におけるエネルギー変換器として重要な役割を担い、宇宙線加速器の有力な候補とされている。しかしながら無衝突衝撃波の基本構造には未解明な点も多い。マッハ数の高いいわゆる超臨界衝撃波では、しばしば定常な波面構造が維持されないことが知られている。非定常衝撃波の実証的研究は、従来人工衛星を用いたその場観測により行われてきた。観測点が限られるその場観測では、波面の揺らぎを直接とらえることは難しいため、波面の揺らぎを反映した物理量の時系列データの変動を波面近傍でリモートにとらえることが重要となる。これに対して、我々が近年取り組んでいる無衝突衝撃波の室内実験では、衝撃波構造の時空間発展を連続的にとらえることができるため、波面の揺らぎを直接的に計測することが可能である。

実験では、チャンバー内に希薄ガスを充填した状態で、固体ターゲットにレーザーを照射する。レーザー照射によりガスおよびターゲットが瞬時にプラズマ化し、ターゲットプラズマがガスプラズマを圧縮することで衝撃波が生成される。さらに、ヘルムホルツ型のコイルにより外部磁場を印加し、プラズマを磁化する条件も実現した。

2024年度の実験では、ガスにヘリウム、ターゲットに炭素を用い、ガス圧および外部磁場強度を変化させた。自発光ストリーク計測により、衝撃波の伝搬方向に沿った直線状のスリットを通ったプラズマからの自発光データの時間変化をとらえた。スリットに沿った自発光強度の空間波形を解析し、その空間勾配が最大となる位置を衝撃波面と同定して、勾配の時間変化をプロットしたところ、周期的な変動が見られた。その周期はガスイオンのサイクロトロン周波数の逆数のオーダーであった。

2025年度の実験では、衝撃波速度(マッハ数)を変えて波面揺らぎの振幅などに変化が見られるかに注目する。発表では、9月に得られる予定の新たな実験データを交えて議論を行う。