ポスター2:11/25 PM1(13:45-15:45)

局所磁場を有する月永久影領域における静電プラズマ環境の粒子シミュレーション

#土田 新太 $^{1)}$, 中園 仁 $^{1)}$, 三宅 洋平 $^{1)}$ $^{(1)}$ 神戸大学大学院システム情報学研究科

Particle Simulation of Electrostatic Plasma Environment in Permanently Shadowed Regions of the Moon with Localized Magnetic Fields

#Arata TSUCHIDA¹⁾, Jin NAKAZONO¹⁾, Yohei MIYAKE¹⁾
(1 Graduate School of System Informatics, Kobe University

In airless planetary bodies such as the Moon, the solar wind plasma precipitates directly onto the surface. The plasma charge deposition on the surface and the photo-emitted electron current determine the dayside, near-surface electrostatic environment. Although the Moon has no global intrinsic magnetic field like the Earth, it is widely known that there are locally magnetized crusts (magnetic anomaly). This region is suggested to have distinctive plasma environments and electric field structures. In particular, it is speculated that water ice exists stably for long periods of time in permanently shadowed regions with magnetic anomalies, but the detailed mechanism is not yet clear. Elucidating the preservation mechanism is important for future exploration missions and resource utilization. However, direct observational data is currently limited to upper altitudes, and there is a lack of information on the plasma and electromagnetic environment at lower altitudes.

The present numerical study considers a situation in which a permanent shadow is formed by solar wind plasma pouring down at an angle close to parallel with a depression containing a small dipole magnetic field in the ground. Using the PIC (Particle-In-Cell) method, we conducted a three-dimensional plasma particle simulation and analysed the electrostatic environment and plasma dynamics near the permanent shadow region with a localized magnetic field.

Consequently, in terms of potential and density distribution, it was demonstrated that, in a magnetic dipole moment configuration parallel to the lunar surface, a high-potential region forms at the center of the field and a potential difference occurs between the up- and down-stream sides of the solar wind. Meanwhile, in a magnetic dipole moment configuration perpendicular to the lunar surface, a potential gradient was confirmed to be formed within the magnetized region and in the vertical direction of the solar wind velocity vector. Additionally, it was shown that small-scale magnetic fields can influence electron motion within permanently shadowed terrain, resulting in electron penetration. Through analyzing current density and particle trajectories, it was confirmed that electron gyro motions as well as electron reflection and penetration regulated by magnetic mirrors, contribute to potential formation near magnetized regions.

月を始めとする大気が希薄な固体天体では、太陽風などの宇宙プラズマが直接表面に降り注ぐ。プラズマの降り込みによる天体表面への電荷蓄積や、光電効果による光電子電流が表面近傍での静電気環境を決定づける。月には地球のような固有磁場は存在しないが、これまでの観測により局所的に磁化された地殻(磁気異常)が存在することも明らかとなっており、この領域では、通常の月面とは異なるプラズマ環境や電場構造が形成されることが示唆されている。特に、磁気異常を有する永久影領域では、水氷が長期間安定して存在すると考えられているが、その詳細なメカニズムは明らかではない。その保存メカニズムを解明することは、将来的な探査ミッションや資源利用の観点からも重要である。しかし、現在の直接観測データは上空に限られており、低高度でのプラズマおよび電磁気環境に関する情報が不足している。

そこで本研究では、地中に小規模な双極子磁場を持つ凹地に対しほぼ平行な角度で太陽風プラズマが降り注ぐため永久影が存在する状況を想定し、PIC(Particle-In-Cell) 法を用いた 3 次元プラズマ粒子シミュレーションを実施し、局所磁場を有する永久影領域付近の静電環境、粒子運動を解析することで、その帯電構造の理解を目的とした。

その結果、電位や密度分布の観点から、月面に平行なダイポール磁場では磁場中心に高電位帯が形成され、太陽風の風上側と風下側で電位差が生じることを示した。また、月面に垂直なダイポール磁場では、磁化領域内部および太陽風速度ベクトルの垂直方向にも電位差が生じることを確認した。さらに、永久影を形成する地形内でも、小規模な磁場が電子の運動に影響を及ぼし、電子の侵入が起こることを示した。電流密度や粒子軌道の解析では、ローレンツ力による電子の回転運動や、磁気ミラー効果で規定される電子の反射・流入が磁化領域近辺の電位形成に関与することを明らかにした。