ポスター2:11/25 PM1 (13:45-15:45)

月面近傍における電位・電場計測に関する数値シミュレーション

#谷口 泰斗 $^{1)}$, 栗田 怜 $^{2)}$, 中園 仁 $^{3)}$, 三宅 洋平 $^{3)}$, 臼井 英之 $^{3)}$, 小嶋 浩嗣 $^{2)}$ $^{(1)}$ 京都大学大学院工学研究科, $^{(2)}$ 京都大学生存圏研究所, $^{(3)}$ 神戸大学システム情報学研究科

Numerical Simulations of Potential and Electric Field Measurements near the Lunar Surface

#Taito TANIGUCHI¹⁾, Satoshi KURITA²⁾, Jin NAKAZONO³⁾, Yohei MIYAKE³⁾, Hideyuki USUI³⁾, Hirotsugu KOJIMA²⁾
⁽¹Graduate School of Engineering, Kyoto University, ⁽²Research Institute for Sustainable Humasnosphere, Kyoto University, ⁽³Graduate School of System Informatics, Kobe University

In recent years, exemplified by NASA's Artemis program, plans for the utilization of the lunar surface have been advancing. Once realized, such utilization is expected to serve as a base for deep space exploration as well as a new domain for human activity. However, since the Moon lacks both an atmosphere and a global intrinsic magnetic field, charging phenomena arise through interactions between the lunar surface and space plasma. Lunar surface charging is governed by the balance between the inflow of solar wind and magnetospheric plasma, and the photoelectron emission induced by solar illumination. It is considered to occur across various spatial scales, from the global scale, down to local topographic features, and even at the level of individual regolith grains. The electrostatic forces associated with surface charging may cause fine dust particles within the regolith to be lofted. Indeed, during the Apollo program, lunar dust was reported to damage spacesuits and equipment, and to have adverse effects on human health. Therefore, prior to the practical utilization of the Moon, understanding the potential and electric field structures near the lunar surface induced by surface charging is essential. At present, however, no reliable measurement techniques have been established. The purpose of this study is to devise a method for measuring the near-surface potential and electric field structures caused by lunar surface charging, through computer simulations.

For this study, we employed the three-dimensional PIC simulation code EMSES, which can resolve the charging of objects in plasma, to reproduce the lunar environment under various plasma conditions. In EMSES, diverse situations can be modeled by specifying plasma parameters such as temperature and density, as well as by defining internal boundaries representing the lunar surface and conducting bodies. As a basic setup, we assumed a solar wind plasma environment without introducing magnetic fields or photoelectrons. Within this setup, we placed the lunar surface, a large conductor situated on it, and a small conductor above it representing a probe. By sweeping the probe voltage with respect to the potential of the large conductor taken as a reference, we obtained current – voltage (I - V) characteristics and analyzed them to evaluate the plasma potential. Conventionally, plasma potential is determined from probe I - V characteristics through differential or logarithmic methods, by identifying the intersection between the saturation and transition regions. However, in the present simulations, this approach did not allow for sufficient determination. Therefore, we examined an alternative method in which a bias current was applied to the probe in order to bring its floating potential closer to the plasma potential, thereby enabling estimation of the latter.

Furthermore, in actual deployment of measurement instruments on the lunar surface, multiple options exist for their configuration. In this presentation, we report on the effects of different configurations as revealed by the simulations, and on the resulting considerations for plasma potential measurement methods.

近年、NASAのアルテミス計画に代表されるように、月面の利用計画が進められている。月利用が実現すれば、深宇宙探査の拠点や人類活動の新たな空間としての活用が期待される。しかし、月には大気や全球規模の固有磁場が存在しないため、宇宙空間プラズマと月面の相互作用によって帯電現象が生じる。月面帯電は、太陽風や磁気圏プラズマの流入と、太陽光照射による光電子放出のバランスによって決定され、全球規模から地形スケール、さらにはレゴリス粒子に至るまで、様々な空間スケールで発生すると考えられている。帯電に伴う静電気力により、レゴリスの中で特に粒径の小さいダスト粒子が舞い上がる可能性が指摘されており、実際にアポロ計画では、ダストが宇宙服や機器の損傷、さらには人体への悪影響を引き起こしたと報告されている。したがって、月面利用に先立ち、月面帯電に起因する月面近傍の電位・電場構造の理解は不可欠であるが、現在のところ正確な測定手法は確立されていない。本研究は、計算機シミュレーションを通じて、月面帯電に起因する月面近傍の電位・電場構造の測定手法を考案することを目的とする。

本研究では、様々なプラズマ環境下における月面環境を模擬するため、プラズマ中の物体帯電を解くことが可能な三次元 PIC シミュレーションコード「EMSES」を用いた。EMSES では、プラズマの温度や密度に加え、月面や導体に見立てた内部境界を定義することで、多様な状況を再現することができる。シミュレーションの基本設定として、磁場や光電子を導入していない太陽風プラズマ環境を想定し、月面とその上に配置した大導体、さらに上空にプローブに見立てた小導体を設置した。そして、大導体の電位を基準に小導体の電圧を掃引し、得られた I-V 特性を解析することでプラズマ電位を評価した。一般的には、プローブ電圧の掃引から得られた I-V 特性を微分や対数処理し、飽和領域と遷移領

域の交点からプラズマ電位を決定する手法が知られている。しかし、本シミュレーションにおいては、その方法で十分な特定を行うことが困難であった。そこで本研究では、プローブにバイアス電流を与えることでプラズマ電位と浮遊電位を近づけ、そこからプラズマ電位を推定する手法の利用を検討した。

また、実際に月面上で測定機器を配置する際には、その配置方法に複数の選択肢が存在する。本発表では、シミュレーションにより明らかになった配置の違いによる影響と、それに基づくプラズマ電位測定手法の検討結果について報告する。