C会場:11/26 AM1 (9:15-10:45)

9:15~9:30:00

磁気リコネクションアウトフローの電流シート環境依存性

#近藤 光志 1)

(1 愛媛大宇宙進化研究センター

Dependence of magnetic reconnection outflow on the current sheet condition

#Koji Kondoh¹⁾

(1 Research Center for Space and Cosmic Evolution, Ehime University, Japan

Magnetic reconnection is a significantly powerful engine that converts magnetic field energy into plasma kinetic energy and thermal energy in a variety of environments, such as the solar atmosphere, planetary magnetospheres, and black hole magnetospheres. The energy conversion efficiency in these diverse environments is primarily determined by the current sheet environment.

"The current sheet environment" refers to the plasma and magnetic field environments on both sides of the current sheet, specifically the magnetic field strength ratio and plasma temperature/density ratio. First, we show the dependence of the magnetic reconnection outflow on the magnetic field strength ratio in isothermal initial equilibrium, and then we show its dependence on the initial density ratio with the fixed magnetic field strength ratio. We particularly focus on the time evolution of the reconnection outflow in the fan and plasmoid regions.

C会場: 11/26 AM1 (9:15-10:45)

9:30~9:45:00

連結階層シミュレーションによる Hall 効果とリコネクションレートの関係

#芥川 慧大 $^{1)}$, 今田 晋亮 $^{1)}$, 庄田 宗人 $^{1)}$ $^{(1)}$ 東京大学理学系研究科地球惑星科学専攻

Relationship between Hall effect and reconnection rate with multi-hierarchy simulation

#Keita Akutagawa¹⁾, Shinsuke IMADA¹⁾, Munehito SHODA¹⁾

Magnetic reconnection is a multiscale phenomenon; fluid and particle scales interact. Particle-in-cell (PIC) simulation which can describe plasma kinetics is widely used for understanding collisionless magnetic reconnection. However, PIC simulations cannot cover the MHD scale such as solar flares which has 10^8 scale gap due to its expensive computational cost. Multi-hierarchy simulation - which solves both MHD and PIC simultaneously - is a promising approach to understand cross-scale coupling in magnetic reconnection.

We performed simulations of magnetic reconnection with changing the size of PIC domain using our multi-hierarchy simulation code KAMMUY. We found that although the Hall magnetic field does not exist in the MHD region, the reconnection rate is comparable to that obtained from PIC simulation. It suggests that kinetic or Hall effects are only important for diffusion region, and may not necessary for reconnection rate in large systems.

磁気リコネクションは流体スケールと粒子スケールの物理が相互作用するマルチスケール現象である。プラズマ運動論を記述する Particle-in-cell (PIC) シミュレーションが無衝突磁気リコネクション研究で広く使われてきたが、計算コストが高いために MHD スケールを扱うことはできない。PIC シミュレーションと MHD シミュレーションを同時に扱う連結階層シミュレーションは、太陽フレアの場合は 10^8 程度もある、プラズマ運動論と MHD の間のスケールギャップを乗り越える可能性のある手法の一つである。

我々は連結階層シミュレーションコード KAMMUY を開発し、PIC 領域のサイズを変えて 100 イオン慣性長の系での磁気リコネクションの数値シミュレーションを行った。その結果、PIC 領域を狭くしたものは MHD 領域に Hall 磁場構造が伝わらないことと、リコネクションレートは系の殆どを PIC で扱ったものと変わらないことが分かった。以上の結果は、100 イオン慣性長よりも大きいような系において、散逸領域では Hall 効果が重要であるものの、散逸領域の外における Hall 効果がリコネクションレートへ与える影響は限定的である可能性を示唆する。

⁽¹Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo

C会場: 11/26 AM1 (9:15-10:45)

9:45~10:00:00

Physics-Informed Neural Networks(PINNs)を用いた MHD リコネクション構造 の再構築

#諌山 翔伍 $^{1,2)}$, 下岡 暉 $^{1)}$, 河野 凌 $^{1)}$, 松清 修一 $^{1,2)}$ $^{(1)}$ 九大総理工, $^{(2)}$ 九大・国際宇宙惑星環境研究センター

Reconstruction of Magnetohydrodynamic (MHD) Reconnection Structures by Physics-informed Neural Networks (PINNs)

#Shogo Isayama^{1,2)}, Hikaru Simooka¹⁾, Ryo KONO¹⁾, Shuichi MATSUKIYO^{1,2)}

⁽¹Kyushu University, Interdisciplinary Graduate School of Engineering Sciences, ⁽²International Space Center for Space and Environ mental Science, Kyushu University

In space, it is difficult to capture the overall plasma structure solely from satellite observations, and it is usually inferred through numerical simulations designed to reproduce the observed data. However, such inferences rely on assumptions such as stationarity and symmetry, which introduce uncertainties. Moreover, observational data are strongly dependent on the satellite trajectory, so even identical structures may yield significantly different results, leaving an inherent ambiguity in their interpretation.

In previous studies of magnetic reconnection, several reconstruction methods have been proposed to infer the surrounding plasma environment from observational data. These approaches are typically based on magnetohydrodynamic (MHD), Hall MHD, or electron MHD (EMHD) equilibria, and therefore are limited to reconstructing time-independent reconnection structures. Meanwhile, methods incorporating the quasi-static temporal evolution of Grad – Shafranov (GS) equilibria have been developed and benchmarked with two-dimensional MHD simulations, demonstrating good performance up to several Alfvén times—the typical MHD timescale [H. Hasegawa, B. U. Ö. Sonnerup, and T. K. M. Nakamura, JGR. 115, A11219 (2010).]. In addition, polynomial-approximation-based methods have been proposed, enabling the recovery of time-dependent two-dimensional magnetic structures [R. E. Denton, R. B. Torbert, H. Hasegawa, et al., JGR. 125, e2019JA027481 (2020).]. Nevertheless, their accuracy remains restricted to localized regions, and their applicability is limited in events involving strong guide fields.

In this study, we propose a new reconstruction method based on Physics-Informed Neural Networks (PINNs). Unlike conventional approaches, PINNs directly evaluate governing equations without assuming equilibrium or symmetry, thereby enabling the reconstruction of dynamic, non-stationary plasma phenomena such as plasmoid formation and magnetic island generation during reconnection. In this presentation, we report benchmark results obtained from MHD simulations of low- β plasmas [S. Zenitani and T. Miyoshi, Phys.Plasmas 18, 022105 606 (2011).]. Focusing on plasmoid structures, we systematically investigate how the number and spatial configuration of satellites affect reconstruction accuracy. The results show that combining upstream and downstream observation points enables consistent capture of both the early plasmoid formation near the X-point and its subsequent downstream evolution, thereby significantly improving the reconstruction accuracy. Furthermore, we demonstrate that PINNs can recover fine-scale structures smaller than the satellite separation. This approach is applicable not only to reconnection structures but also to the reconstruction of various plasma structures in near-Earth space, contributing to a deeper understanding of space plasma phenomena through data-driven approaches. In addition, our findings provide important insights for optimizing satellite deployment strategies in future multi-satellite missions.

宇宙では、衛星観測だけでプラズマの全体構造を把握することは難しく、通常は観測結果を再現する数値シミュレーションによって推定が行われる。しかし、これらは定常性や対称性といった仮定に依存するため不確実性を伴う。さらに観測データは衛星の飛行経路に左右されるため、同じ構造でも得られる結果は大きく異なり、その解釈には本質的な不確実性が残る。

これまでの磁気リコネクション研究では、観測データに基づいて周辺プラズマ環境を再構築する手法が提案されてきた。これらの手法は通常、磁気流体力学(MHD)、Hall MHD、あるいは電子 MHD(EMHD)の平衡状態に基づいており、そのため再構築できるのは時間に依存しないリコネクション構造に限られる。一方で、Grad – Shafranov(GS)平衡の準定常的な時間発展を取り入れた再構築手法も開発され、二次元 MHD シミュレーションによるベンチマークにより、典型的な MHD の時間スケールであるアルフベン時間の数倍程度までであれば良好な性能を示すことが確認されている [H. Hasegawa, B. U. Ö. Sonnerup, and T. K. M. Nakamura, JGR. 115, A11219 (2010).]。さらに、多項式近似を用いた再構築手法も提案されており、時間依存する二次元磁場構造を復元することが可能である [R. E. Denton, R. B. Torbert, H. Hasegawa, et al., JGR. 125, e2019JA027481 (2020).]。しかしながら、その精度は限られた領域にとどまり、強いガイド磁場を伴う事象においては適用性が制約される。

本研究では、Physics-Informed Neural Networks(PINNs)に基づく新しい再構築手法を提案する。PINNs は従来手法と異なり、平衡状態や対称性を仮定せずに支配方程式を直接評価できるため、磁気リコネクションに伴うプラズモイド形成や磁気島生成といった非定常かつ動的なプラズマ現象を再現できる。本発表では、低 β プラズマを対象とした MHDシミュレーション [S. Zenitani and T. Miyoshi, Phys.Plasmas 18, 022105 606 (2011).] によるベンチマーク結果を報告する。特にプラズモイド構造に注目し、衛星数や配置が再構築精度に及ぼす影響を系統的に調査した。その結果、X点近傍の上流観測点と下流観測点を組み合わせることで、プラズモイドの初期形成から発達構造までを一貫して捉えられ、再構築精度が大幅に向上することを確認した。さらに、衛星間隔を下回るスケールの微細構造も再現可能であることを示した。本手法はリコネクション構造にとどまらず、地球近傍の様々なプラズマ構造の再構築にも応用でき、データ駆動型アプローチによる宇宙プラズマ理解の深化に貢献する。加えて、将来のマルチ衛星観測ミッションにおける衛星配置戦略の最適化に資する重要な知見を提供する。

C会場: 11/26 AM1 (9:15-10:45)

10:00~10:15:00

抵抗性 MHD 衝撃波の散逸効果依存性

#清水 徹 ¹⁾ (¹ 愛媛大学

The dissipation effect variations in resistive MHD shock waves

#Tohru Shimizu¹⁾

(1Ehime University PIAS RCSCE

MHD simulation is a powerful tool to study large scale plasma phenomenon, in which the magnetic neutral points and shock waves are mostly studied in ideal-MHD. In that case, it is implicitly assumed that those points and waves are independent of the details of the dissipations. In contrast, it is well-known that the speed of the magnetic reconnection process largely depends on the dissipation's details at the neutral points. In addition, the intermediate shock wave cannot steadily survive in ideal-MHD but may exist in resistive-MHD (e.g., Hada1994GRL). In this talk, the steady states of MHD shock waves are numerically studied in resistive-MHD with some variations of the dissipations.

今日、大規模な宇宙プラズマ現象を考えるとき磁気流体 (MHD) シミュレーションが有効な手段とされるが、その多くは理想 MHD を前提として衝撃波や磁気中性点を解く。そのようなシミュレーションでは、衝撃波や磁気中性点の状態が散逸性の詳細に依存しないことが仮定されているが、その仮定が正しいとする根拠は無い。事実、磁気再結合問題の多くの MHD シミュレーションにおいて、電気抵抗の非一様性 (異常抵抗) が磁気再結合の高速化に大きく影響することはよく知られている。また、中間 MHD 衝撃波は理想 MHD では存在できない (発展条件を満たさない) が抵抗性 MHD では存在可能とする研究もある (Hada1994GRL)。本研究では、MHD 衝撃波の定常解が散逸の与え方によりどのように変化するか、数値的に調べた結果を報告する。

C 会場 : 11/26 AM1(9:15-10:45)

10:15~10:30:00

地球バウショックにおける電子の熱的・非熱的エネルギー分配に関する観測的研究 #本多 龍一朗 1 , 天野 孝伸 1

(1 東大院理

Observational studies of thermal and non-thermal electron energy partition at Earth's bow shock

#Ryuichiro Honda¹⁾, Takanobu Amano¹⁾

(1 Graduate School of Science, the University of Tokyo, Department of Earth and Planetary Science

A shock wave converts the upstream bulk kinetic energy irreversibly into downstream thermal energy. While this conversion can be described macroscopically by the conservation laws of mass, momentum, and energy (Rankine-Hugoniot relations), the energy partition among particle species, such as ions and electrons, cannot be physically predicted in collisionless plasmas. Previous studies have investigated the dependence of energy partition on shock parameters such as the Mach number using observations and numerical simulations, but the details remain not fully understood (Schwartz et al. 1988; Ghavamian et al. 2013; Raymond et al. 2023).

In collisionless shocks in space, thermal and non-thermal particle populations coexist. Observations of electron distributions downstream of Earth's bow shock show a thermal distribution at low energies and a non-thermal power-law distribution at high energies, which is similar to cosmic rays generated in high-energy astrophysical shocks such as supernova remnant shocks. Understanding the energy partition between thermal and non-thermal components at Earth's bow shock may provide a clue for evaluating the energy conversion efficiency into cosmic ray electrons at astrophysical shocks.

In this study, we aim to understand the energy partition between ions and electrons, and further, the partition between the thermal and non-thermal components of electrons, by analyzing in-situ spacecraft observation data from Earth's bow shock. A correlation between the shock's electron temperature jump and the potential in the de Hoffmann-Teller Frame (HTF) has been shown in previous studies (Schwartz et al. 1988; Hull et al. 2000). Therefore, in this research, we calculate the potential defined in the HTF (hereafter referred to as shock potential) using the generalized Ohm's law and discuss it as an indicator of electron energy partition. We use observational data obtained by MMS (Magnetospheric Multi-Scale) spacecraft in burst mode. We calculated the shock potential by assuming that the electron inertial term in the generalized Ohm's law is negligible and that the shock is one-dimensional and stationary. We find that the shock potential falls within the range of ~10-100 eV. No clear correlation was found between the shock potential and the shock parameters These results are consistent with the previous studies (Schwartz et al. 1988, Hull et al. 2000).

Observations from Earth's bow shock have also shown that the downstream electron distribution exhibits a "flat-top" shape, where the thermal distribution connects to a non-thermal power-law distribution through the so-called "shoulder." We have confirmed that the shock potential coincides with the "shoulder" energy as reported previously (Schwartz et al. 1988). Based on this result, we adopted the shock potential as the transition energy between thermal and non-thermal populations and calculated the energy partition between them. We will discuss how the energy partition is regulated by the shock parameter and its relation to the recent work by Lalti et al. (2024).

衝撃波は、上流のバルク運動エネルギーが不連続面を介して下流の熱エネルギーへと不可逆的に変換される現象である。この変換は、質量、運動量、エネルギーの保存則 (Rankine-Hugoniot 関係式) によって巨視的に記述できるが、無衝突プラズマではイオンや電子といった個々のプラズマ粒子種へのエネルギー分配比率を物理的に予言することはできない。各粒子種へのエネルギー分配について、観測や数値シミュレーションを用いてマッハ数などの衝撃波のパラメータ依存性が調べられているが、その詳細は未だ理解されていない。(Schwartz et al. 1988; Ghavamian et al. 2013; Raymond et al. 2023)

宇宙空間の無衝突衝撃波では熱的エネルギーを持つ粒子と、熱平衡から乖離した非熱的粒子が存在する。特に、地球近傍にあるバウショックの電子分布の観測からも、低エネルギーにおける熱的な分布と高エネルギーにおける冪乗則に従った非熱的分布が見られる。このような冪乗則分布は、超新星残骸衝撃波のような高エネルギー天体物理衝撃波において観測される宇宙線においても共通して見られる。地球バウショックと宇宙線の生成エネルギー帯は大きく異なるものの、非熱的成分の冪乗則はその共通性から重要な研究課題である。仮に地球バウショックで観測されるような非熱的電子のスペクトルが宇宙線電子と連続的に接続するとすれば、熱的成分と非熱的成分へのエネルギー分配を理解することは、宇宙線電子へのエネルギー変換効率を理解する上でも重要な鍵となる。

本研究では、イオンと電子へのエネルギー分配、および電子の熱的・非熱的成分へのエネルギー分配を理解することを目的として、地球バウショックの人工衛星観測データ解析を行う。イオンと電子へのエネルギー分配については、衝撃波の電子温度ジャンプと HTF(de Hoffmann-Teller Frame)におけるポテンシャルの相関が先行研究(Schwartz et al. 1988; Hull et al. 2000)により示されている。そのため、本研究では一般化されたオームの法則を用いて HTF で定義したポテンシャル(以下、衝撃波ポテンシャルと呼ぶ)を計算し、電子へのエネルギー分配の指標として議論する。解析には、MMS (Magnetospheric Multi-Scale) 衛星の FPI(Fast Plasma Investigation) および FGM (Fluxgate Magnetometer) が

バーストモードで取得した観測データを使用する。また、上流下流のインターバルやマッハ数などのパラメータは、先行研究の 91 個の衝撃波イベントの解析結果より採用した(Amano et al. 2024)。FGM と FPI の観測時間分解能が異なるため、解析には FGM の時間分解能を FPI に合わせるようデータを平滑化して用いた。一般化されたオームの法則では電子の慣性項を無視し、一次元・定常を仮定して、衝撃波ポテンシャルを求めた。しかしながら、バーストモードの観測時間が短いため、先行研究の上流・下流インターバル全体にわたってデータが常に存在するわけではない。データが十分に存在する数イベントについて衝撃波ポテンシャルの値を算出したところ、先行研究で報告されている~10-100 eV の範囲に収まることが確認された (Hull et al. 2000)。また、これらのイベントについて衝撃波ポテンシャルとマッハ数などのパラメータとの間に明確な相関は見られず、この点も先行研究の知見と一致する (Schwartz et al. 1988)。

また、地球バウショックの過去の観測により、地球バウショック下流の電子分布は熱的分布が「肩」と呼ばれる屈曲点を介して非熱的な冪乗則へと接続される、フラットトップ型の分布を示すことが知られている。このような分布は、衝撃波ポテンシャルによって加速された上流の粒子が、背景の粒子と不安定性を介して混合することによって形成すると定性的に理解されている。本研究では、解析対象とした複数イベントについて熱的分布と非熱的分布の境界に「肩」が存在することを確認した。さらに、先行研究(Schwartz et al. 1988)と同様に衝撃波ポテンシャルの値と「肩」の位置が一致することが見出された。この結果に基づき、衝撃波ポテンシャルの値を熱的・非熱的エネルギーの境界として採用し、この仮定のもと、熱的・非熱的成分へのエネルギー分配の比率を求めた。先行研究(Lalti et al. 2024)では、電子の断熱・非断熱な振る舞いの違いが衝撃波パラメータに依存する可能性が示唆されているため、本研究では求めたエネルギー分配比率と衝撃波パラメータの関係についても議論する。

C会場: 11/26 AM1 (9:15-10:45)

10:30~10:45:00

#星野 真弘 $^{1)}$, 天野 孝伸 $^{2)}$, 松清 修一 $^{3)}$ (1 東京大学, $^{(2)}$ 東京大学, $^{(3)}$ 九州大学

Energy Partitioning of Ions and Electrons for Parallel Shock Waves

#Masahiro Hoshino¹⁾, Takanobu AMANO²⁾, Shuichi MATSUKIYO³⁾ (¹Universiity of Tokyo, (²Universiity of Tokyo, (³Kyushu University

When the supersonic plasma flow interacts with the shock front, the flow is decelerated, and the bulk flow energy can be converted to plasma heating. In essence, the magnitude of ion heating is considerably more substantial in comparison to electron heating. This is primarily attributable to the fact that the bulk flow energy of ions is consistently greater than that of electrons, as indicated by the mass ratio. The total heating of collisionless shock waves can be estimated using the Rankine-Hugoniot jump conditions. The individual temperatures of ions and electrons in downstream are determined by the shock dynamics and the energy transfer processes in plasmas. Such processes include wave-particle interactions, plasma instabilities, and plasma turbulence. In the context of high Mach number shocks, the shock front exhibits characteristics that are neither laminar nor stationary. This phenomenon occurs when the Mach number exceeds the critical Mach number.

Numerous numerical simulations of shock waves have been conducted, leading to significant advancements in our comprehension of non-stationary shock dynamics. In recent discourse, the subject of energy partitioning among ions and electrons has been explored, particularly with regard to the ion-electron temperature ratio in supernova remnants and the solar wind. This exploration has involved the integration of computer-simulated shocks and observational data, fostering a comprehensive understanding of the subject. However, the current state of knowledge regarding energy partitioning is such that a comprehensive understanding remains elusive. This is primarily due to the fact that energy partitioning is a function of numerous variables, including Mach number, shock angle, and the ion and electron plasma beta, among others.

In this presentation, we will examine a parallel shock wave by employing a two-dimensional particle-in-cell simulation. We will also engage in a discussion of various plasma heating processes that are conducive to understanding the energy partitioning between ions and electrons. Specifically, the focus is on the generation of large-amplitude Alfven waves, which are excited by reflected particles from the shock front, and the heating processes that are induced by parametric decay and modulational instabilities, as well as by magnetic reconnection in the current sheet, which is induced by the train of large-amplitude Alfven waves.

C会場: 11/26 PM2 (14:50-16:20)

14:50~15:05:00

地球バウショックにおけるコヒーレントな平行伝播ホイッスラー波の生成

#天野 孝伸 ¹⁾, 北村 成寿 ²⁾ (1 東京大学, ⁽² 名古屋大学

Generation of coherent quasi-parallel whistler waves at Earth's bow shock

#Takanobu Amano¹⁾, Naritoshi KITAMURA²⁾
⁽¹The University of Tokyo, ⁽²Nagoya University

Collisionless shocks have been known as the zoo of plasma waves and instabilities. Plasma waves of all sorts, both electrostatic and electromagnetic, with wavelengths ranging from Debye length to much longer than the ion inertial length, have been found in observations and simulations. Since the dissipation in collisionless shocks has to be provided by collective interaction between particles and electromagnetic field fluctuations, the presence of these plasma waves is indeed essential. The roles of the individual waves on the heating and acceleration of particles have been the topic of active research.

Recent theory and observations indicate that whistler waves may be a crucial agent in regulating the acceleration of nonthermal electrons sometimes observed by spacecraft at the Earth's bow shock (Amano et al. 2020, Amano and Hoshino 2022). In-situ spacecraft observations show that high-frequency quasi-parallel propagating whistler waves (with typical frequencies comparable to ~10% of the local electron cyclotron frequency) often appear within the shock transition layer as coherent wave packets in a sporadic manner (e.g., Oka et al. 2017). Furthermore, comparison between different spacecraft in the MMS (Magnetospheric Multiscale) constellation implies that the wave packets seem to have very small spatial scales transverse to the wave propagation direction, perhaps on the order of ~10 electron inertial lengths, corresponding to a few wavelengths. It is not known how and why such coherent, small-scale wave packets are spontaneously generated in the shock.

In this study, we perform two-dimensional (2D) particle-in-cell (PIC) simulations of quasi-perpendicular shocks with moderate Mach numbers (Alfven Mach number of 5-10), relevant to the Earth's bow shock. We find that coherent high-frequency whistler waves are indeed reproduced in the simulated shocks. They appear around the overshoot and ramp regions, with nearly parallel propagation with respect to the local magnetic field direction. On the other hand, the waves have a relatively narrow transverse (i.e., perpendicular to the magnetic field) scale, comparable to the wavelength. They often appear and disappear in response to low-frequency compressional magnetic fluctuations, which are likely to be driven by the ion dynamics. All these characteristics seen in PIC simulations are qualitatively consistent with spacecraft observations.

We will present the result of an ongoing investigation that quantifies the wave properties for more detailed comparison with observations, including wave frequency, propagation angle, amplitude, and packet size. We will also analyze the anisotropy of the local velocity distribution function, which may provide a clue to identify the wave generation mechanisms and the reasons for the sporadic wave appearance.

C 会場 : 11/26 PM2(14:50-16:20)

15:05~15:20:00

#王 若琳 ¹⁾, 天野 孝伸 ¹⁾
⁽¹ 東京大学

Electron Confinement and Associated Acceleration at Quasi-Perpendicular Shocks

#Ruolin Wang¹⁾, Takanobu AMANO¹⁾
(1the University of Tokyo

Diffusive shock acceleration (DSA) is widely recognized as the primary mechanism responsible for generating high-energy particles in supernova remnant shocks. However, it struggles with the so-called injection problem, as DSA can't accelerate low-energy particles efficiently. One promising solution is stochastic shock drift acceleration (SSDA), which relies on high-frequency whistler waves to both confine and energize electrons near the shock. While many simulations have confirmed the presence of such waves upstream of quasi-perpendicular shocks (e.g., Matsukiyo et al., 2011; Guo et al., 2014), the precise mechanisms underlying their generation remain unclear.

To address this gap, our work investigates how shock parameters determine the local electron distribution and trigger wave instabilities. We first develop a realistic electron velocity distribution model by applying Liouville mapping with assumed upstream and downstream electron distributions under a steady magnetic field profile. To account for non-adiabatic effects, pitch-angle diffusion is incorporated. This modeling framework captures critical kinetic features—such as loss-cone distributions—that provide the necessary free energy for wave excitation. Based on these distributions, we perform a linear stability analysis using a semi-analytical method capable of handling arbitrary velocity distributions. This approach enables us to evaluate the growth and damping rates of wave modes and identify the contributions of individual resonance conditions.

Applying this framework to the parameters of Earth's bow shock, our model reveals two self-generated upstream instabilities: the parallel and oblique whistler modes. Both are driven by loss-cone electron distributions and propagate toward the shock, facilitating particle confinement and acceleration. The oblique whistler mode survives longer in diffusion process, suggesting it may play a dominant role. Interestingly, diffusion not only damps existing instabilities but also leads to the emergence of new ones, resulting in a sequence of instabilities that collectively enhance electron confinement.

To identify the shock conditions favorable for the generation of oblique whistler waves, we perform a comprehensive parameter survey. The results indicate that the Alfvén Mach number in the de Hoffmann – Teller frame, is a critical control parameter, with larger values promoting wave growth—consistent with observational findings. Additionally, high electron beta conditions also promote instability growth. These results establish a direct link between shock parameters and wave generation, supporting the view that high Mach number, quasi-perpendicular shocks are favorable for electrons confinement and acceleration.

C 会場 : 11/26 PM2(14:50-16:20)

15:20~15:35:00

Reflected ions and nonstationarity confirmed in collisionless shock experiment using power laser

#Shuichi Matsukiyo¹⁾, Shogo Isayama¹⁾, Yuma Sato¹⁾, Kana Takahashi¹⁾, Taichi Morita¹⁾, Taichi Takezaki²⁾, Ryo Yamazaki³⁾, J. Shuta Tanaka³⁾, Takayoshi Sano⁴⁾, Yasuhiro Kuramitsu⁴⁾, Kentaro Sakai⁵⁾, Youichi Sakawa⁴⁾
⁽¹Kyushu University, ⁽²University of Toyama, ⁽³Aoyama Gakuin University, ⁽⁴Osaka University, ⁽⁵National Institute for Fusion Science

We reproduce a collisionless shock using high-power laser experiment which is increasingly being recognized as a major empirical research tool in this field. Long pulse laser irradiates a plate target to create a high-speed plasma flow normal to the target plate. Surrounding gas is ionized with intense radiation generated from the interaction between the laser and the target material. Ambient magnetic field almost parallel to the plate surface is applied by using a Helmholtz-like coil so that the gas plasma was nearly homogeneously magnetized. The high-speed target plasma acts as a magnetic piston to form a shock in the ambient gas plasma.

By analyzing the spatiotemporal imaging data of self-emission intensity, we extracted fluctuations of the shock front and demonstrated that their period is on the order of the inverse of the ion gyro frequency. Thomson scattering measurement in the transition region of the shock showed highly asymmetric spectrum, indicating that the local plasma is composed of two ion populations having different bulk speed.

We developed 2D PIC simulation to reproduce collective Thomson scattering in a beam-plasma system in a self-consistent manner. Characteristics of 2D spectrum of the scattered waves for various beam parameters were examined. Assuming weak beam-plasma condition, the reproduced scattered wave spectrum showed asymmetric nature similar to what was observed in the experiment. Therefore, we conclude that the local plasma in the shock transition region observed in the experiment is composed of background ions, electrons, and beam (or reflected) ions. The presence of the weak reflected ion beam may cause the fluctuations of the shock front. The fluctuations may be attributed to breathing, a phenomenon observed in collisionless shocks with high ion temperatures.

C 会場 : 11/26 PM2(14:50-16:20)

15:35~15:50:00

電子-陽電子-イオンプラズマ中の相対論的衝撃波による陽電子の選択的加速メカニ ズムと天体への応用

#荒井 翔吏 ¹⁾, 松本 洋介 ²⁾
(1 千葉大学, ⁽² 千葉大学

Selective positron acceleration by relativistic electron-positron-ion shocks and its application to astronomical objects

#Shori Arai¹⁾, Yosuke MATSUMOTO²⁾

⁽¹Graduate School of Science and Engineering, Chiba University, ⁽²Institute for Advanced Academic Research, Chiba University

The origin of the high energy positron cosmic rays remains an open question. Space experiments such as PAMELA, Fermi-LAT, and AMS-02 have reported that the flux ratio of positrons to electrons, the positron fraction, at energies above 10 GeV exceeded expectations from the theories that are based on the secondary positron model, implying the existence of other sources of high-energy primary positrons. Detailed mechanisms of charged particles' accelerations have been studied using the ab initio particle-in-cell (PIC) simulations. Our presentation last year indicated that upstream positrons were preferentially accelerated in relativistic magnetized electron-positron-ion shocks when the positron fractions were small enough to generate the wakefield by performing 1D PIC simulations.

In this study, we present detailed acceleration mechanisms and conditions for efficient positron acceleration. Test particle simulations modeling an interaction between the wakefield and relativistic particles under ambient magnetic field revealed that preferential positron acceleration takes place when the amplitude of wakefield surpasses the ambient magnetic field strength in the plasma rest frame. This process was found to be consistent with the acceleration mechanism referred to as the relativistic $E \times B$ acceleration (Takeuchi 2003, Friedman & Semon 2005). In addition, we estimated the energy gain from this acceleration and discussed which types of astronomical objects could efficiently facilitate this mechanism. In this presentation, we will present the detailed acceleration mechanism and its implications to the high-energy primary positrons, and discuss future perspectives including multi-dimensional effects.

C 会場 : 11/26 PM2(14:50-16:20)

15:50~16:05:00

中心性2重星型超巨大ブラックホールによる M87 銀河の.Jet 形成

#大家 寛 ¹⁾ ⁽¹ 東北大

The Formation of Jet of M87 Galaxy Revealing Existence of Central Binary of Super Massive Brack Hole

#Hiroshi Oya¹⁾

(1 Graduate School for Science, Tohoku University

The current of this study started from the observations of decameter radio wave pulses at 21.86 MHz to detect spins of the supermassive black hole from SgrA*at the center of Milky Way galaxy. using Tohoku University long baseline interferometer system. The result of data analyses indicated (Oya,2019) that there exist the extreme central binary of the supermassive black hole (ECB-SMBH) orbiting with a period of 2200+-50sec. To verify the existence of ECB-SMBH the confirmation of negation of the gravitational wave from ECB-SMBH has become mandatory subject to continue present study. After continuing this current of study we found that the subject of the negation of the gravitational wave becomes equivalent to the confirmation of the existence of the ECB-SMBH at the center of M87 (M87*).; as an activity to proceed the confirmation of the existence of ECB-SMBH at M87*, then we started to investigate the possible effects of ECB-SMBH on the M87 Jet focusing on the difference of interpretation between the traditional case of the single SMBH assumption. In this binary origin theory of M87 Jet formation, the starting point of the jet is located at the shock front region of minor member of M87 ECB-SMBH, M87*-B which has 2.2 billion solar mass with orbiting period of 133.8d with velocity of 0.16c associated with widely spread accretion disc with intense toroidal magnetic fields. Within this shock front which produces impulsively structured electric fields, ions are launched upwards, to be main material of the jet keeping intrinsic orbital velocity as horizontal component of the jet velocity. The launched jet of ions associated with electrons enter the phase where the shape reveals most remarkable feature characterized by "zebra like stripes" whose repetition cycle of pattern from thin to thick feature clearly coincides with orbital period 134d of the binary whose accretion disc has role of the launcher of the jet.

宇宙における活動銀河核(AGN)に関する Jet 形成の研究史に於いて、基本的概念は単独の超巨大 BH の自転とそのエネルギーが発生源とされてきた。本研究は天の川銀河中心 BH が中心性極端 2 重星型超巨大 BH(ECB-SMBH)であるとの観測結果(2019, http://hdl.handle.net/10097/00126480)を出発点として、M87*においても、観測電波像、(Miyoshi et al, (2022), ApJ, 933,36 及び Lu et al. (2023), Nature, 616, 686) から ECB-SMBH の存在を結論して来た(Oya,2024, doi. 10.33140/ATCP.07.02.11)。それは、42 億倍(M87*-A)と 22 億倍(M87*-B)太陽質量を持つ SMBH より成り、周期 133.8 日で周回し合っていて、M87*-B は半径 9.67 x 10E15 cm の軌道を速度 0.16c で運航し、伴う降着円盤の外縁には M87*-A が 0.8c で運航している。従って M87*-B の降着円盤の進行フロント領域には、バイナリーの共通降着円盤を追いかける形で衝撃波が形成される。

M87*-B の降着円盤は中心 BH の強い重力に平衡すべく亜光速で回転するプラズマが強力なトロイダル磁場と共存しているが、形成される衝撃波フロントでは磁力線凝縮により局所的に強められていて、衝撃波に接するバイナリー共通降着円盤領域には衝撃波通過時間に対応する鋭い誘導電場が励起される。この電場により、接する共通降着円盤側の一帯からプラズマが噴射される。噴射されたプラズマは Jet を形成するが以下の 3 段階の変遷を経た後 Jet 状態を終え。最終的に宇宙空間に拡散して行く。第一段階では、噴射プラズマは発射点の軌道運行速度成分を保持したまま同時に垂直速度成分を得て、斜め方向に直線放射運動を初めるが、観測される Jet は発射源座標の円軌道を反映し、半径が時間経過に比例して拡大するスパイラルとして観測される。以降第 2 段階に入るが、Jet の形態は静的平衡ではなく、Jet を構成するイオン流に主導されて起こるプラズマ中電流を主体に、発生する局所磁場と、ローレンツ力を擁する電磁力を主体とする動的平衡状態によって Jet 形態が作られる。具体的には円筒形 Jet の半径方向の運動が抑圧され振動状態を経て、停止方向に向かう一方、円筒周辺方向への運動開始と、Jet 軸方向への加速が顕著になる。M87 – Jet が円筒型で周縁からの電磁波放射が卓越している現象が説明されると共に、最も特徴は円筒形 Jet 軸に鋭角方向に形どられる縞模様がこのバイナリー Jet 論の帰結として説明される。即ち縞模様の間隔は Jet が軸方向に 0.26c の速度成分を持って移動している時、ECB-SMBHの公転周期 134 日を直接反映している事が確認され、これは従来の Jet 形成論では的確な議論を見ない点である。

第3段階ではらせん状に運動するイオン主導プラズマはらせん状磁場を形成し Force Free 状態に入り、Jet の長期にわたる動的平衡状態を得ている。この場合 M87Jet の円筒に直角の断面は中心が希薄で周辺が高い密度になる形態が観測されているがこの状態も本バイナリー Jet 起源論では数論的にベッセル関数表現で自然に説明されている。

C会場: 11/27 AM1 (9:15-10:45)

9:15~9:30:00

#岩本 昌倫 $^{1)}$, 井岡 邦仁 $^{2)}$ $^{(1)}$ 神戸大, $^{(2)}$ 京都大

Propagation of Linearly Polarized Strong Waves in Pair Plasmas

#Masanori Iwamoto¹⁾, Kunihito Ioka²⁾
⁽¹Kobe University, ⁽²Kyoto University

Strong electromagnetic waves are ubiquitous in the universe, with fast radio bursts (FRBs) being the most prominent example. FRBs are millisecond-duration bright flashes of radio waves, typically originating from extragalactic distances (Lorimer 2007). Some FRBs repeat, and these repeating sources often exhibit a high degree of linear polarization. Magnetars are considered the most likely progenitors of repeating FRBs. However, the emission mechanism remains debated, with proposed models including coherent curvature radiation in the magnetosphere and synchrotron maser emission in relativistic collisionless shocks. In any scenario, FRB pulses must propagate through the surrounding plasma to escape. The waves are strong in the sense that the particle oscillation velocity within them becomes relativistic. Such strong waves are inevitably subject to stimulated scattering, which may hinder their propagation and constrain the emission region (Beloborodov 2024). The role of stimulated scattering, however, remains controversial, particularly in the relativistic regime (Lyutikov 2024).

A major challenge in studying stimulated scattering lies in the analytical intractability of the self-consistent equations for linearly polarized electromagnetic plane waves of arbitrary amplitude. In this talk, we revisit these equations and show that the degree of nonlinearity is governed by a single variable. Using particle-in-cell simulations, we further demonstrate the time evolution of the steady-state solution and discuss the implications of stimulated scattering for FRB pulse propagation.

C会場: 11/27 AM1 (9:15-10:45)

9:30~9:45:00

高速イオンが駆動する低域混成波及びイオンバーンスタイン波の不安定性解析

#小谷 翼 $^{1)}$, 樋田 美栄子 $^{2)}$, 森高 外征雄 $^{2)}$, 田口 聡 $^{1)}$ $^{(1)}$ 京大理, $^{(2)}$ 核融合研

Instability analysis of lower hybrid and ion Bernstein waves driven by energetic ions

#Tsubasa Kotani¹⁾, Mieko Toida²⁾, Toseo Moritaka²⁾, Satoshi TAGUCHI¹⁾
⁽¹Graduate School of Science, Kyoto University, ⁽²National Institute for Fusion Science

It is well known that lower hybrid and ion Bernstein waves can be excited by energetic ions with a ring-like velocity distribution. Taking into account the thermal effects, the lower hybrid wave is regarded as one of the ion Bernstein modes. Many studies analyzed the instability for these two waves, but few studies examined how many energetic ions are required to drive the instability, that is, the density threshold. In this study, we systematically analyze the lower hybrid and ion Bernstein wave instability driven by energetic ions. Focusing on two parameters, the ratio of electron plasma to electron cyclotron frequency and velocity of energetic ions, we numerically derive the density threshold of energetic ions. We discuss how the threshold depends on the two parameters. We also discuss the instability mechanism theoretically and compare the theory with the numerical results.

リング状の速度分布をもつ高速イオンによって、低域混成波やイオンバーンスタイン波が励起されることが知られている。熱的効果を考えるとイオンバーンスタインモードの一種とみなせる。過去多くの先行研究によって、この二つの波動に関する不安定性が解析されているが、不安定性を引き起こすのにどれほど高速イオンが必要なのか、すなわち密度閾値について調べている研究は殆どない。そこで我々は、高速イオンによって駆動される低域混成波およびイオンバーンスタイン波不安定性を系統的に解析した。電子サイクロトロン周波数に対する電子プラズマ周波数の比および高速イオンの速度の二つのパラメータに注目して、高速イオンの密度閾値を数値的に導出した。本学会では、閾値の二つのパラメータに対する依存性について議論する。また、不安定性の機構を理論的に考察し、数値計算の結果と比較する。

C会場: 11/27 AM1 (9:15-10:45)

9:45~10:00:00

#林 東潤 $^{1)}$, 栗田 怜 $^{1)}$, 小嶋 浩嗣 $^{1)}$, 谷口 泰斗 $^{1)}$, 中園 仁 $^{2)}$, 三宅 洋平 $^{3)}$, 臼井 英之 $^{3)}$ $^{(1)}$ 京都大学、 $^{(2)}$ 神戸大学システム情報学研究科、 $^{(3)}$ 神戸大学

Computer Simulation of Dust Impact signals Detected by Electric Field Instruments Onboard Satellites

#TUNGJUN LIN¹⁾, Satoshi KURITA¹⁾, Hirotsugu KOJIMA¹⁾, Taito Tanikuchi¹⁾, Jin NAKAZONO²⁾, Yohei MIYAKE³⁾, Hideyuki USUI³⁾

(1 Kyoto University, (2 Graduate School of System Informatics, Kobe University, (3 Kobe University

High-speed collisions between spacecraft and interplanetary or interstellar dust generate plasma clouds that cause dramatic changes in the spacecraft's potential. While these "dust impact" signals are observed by electric field instruments onboard scientific satellites like STEREO and ARTEMIS, a comprehensive theoretical model explaining the physics is still lacking. Existing simple models can explain the data acquired by the STEREO satellites, but often fail when applied to the ARTEMIS observation, indicating a lack of our understanding of the physical mechanisms of dust impact-generated signals.

This study utilizes EMSES, a particle-in-cell (PIC) simulation tool, to reproduce the entire process of a dust impact. By simulating the electron and ion dynamics, we aim to clarify how the spacecraft's potential responds to these events. As a first step, we implement a simplified dust impact current model, where the collected electron current is assumed to be a Gaussian function of time, to establish a baseline simulation.

Ultimately, a better understanding of these dynamics has two future applications. First, using the spacecraft itself as a detector to determine the properties of interplanetary and interstellar dust. Second, developing methods to eliminate unwanted dust impact signals from electric field data on future space missions, thereby improving the precision of scientific measurements.

C会場: 11/27 AM1 (9:15-10:45)

10:00~10:15:00

人工衛星からの二次粒子放出に伴う空間電荷効果に関する粒子シミュレーション

村井 佑多 ¹⁾, #三宅 洋平 ¹⁾, 岩本 昌倫 ¹⁾ ⁽¹ 神戸大学大学院システム情報学研究科

Particle Simulations of Space Charge Effects Associated with Secondary Emission from Spacecraft

Yuta MURAI¹⁾, #Yohei MIYAKE¹⁾, Masanori IWAMOTO¹⁾
⁽¹Graduate School of System Informatics, Kobe University

The European Space Agency (ESA) and JAXA are collaborating on the Comet Interceptor mission to visit and explore a long-period comet. Comets are composed of more than 80% water molecules, and since their surfaces are constantly evaporating, the surroundings of comets are abundant in neutral particles, mainly water molecules. When these particles collide at high speed with a spacecraft, the spacecraft surface will release secondary particles (electrons and ions). These secondary particles not only act as unwanted detection components in plasma observations but also interfere with spacecraft charging processes.

This study aims to clarify the effects of secondary particle emission on spacecraft charging and the surrounding plasma environment. We performed 3-dimensional plasma particle simulations with a spacecraft body based on the Particle-in-Cell (PIC) method. The results showed that the majority of emitted secondary remained close to the spacecraft surface. The dense ion cloud forms a positive potential barrier at the surface. Due to the potential structure caused by the dense population of secondary ions, both electrons from the cometary plasma and secondary electrons emitted from the spacecraft are also concentrated around the spacecraft. The potential structure formed by such a space charge effect is suggested to affect low-energy ion measurements to be made in the Comet Interceptor mission.

To further elucidating the potential barrier formation processes, we conducted 1-dimensional simulations focusing on proximity of the emission surface of the spacecraft. The formation of a potential barrier depends on the secondary ion yield and temperature. The formation of the barrier is suppressed, particularly at high temperatures. A detailed parametric analysis revealed that the minimum secondary ion temperature required to suppress the potential barrier is proportional to the secondary ion yield raised to approximately the 2.5th power.

We have also identified a repeated accumulation and release of space charge near the emission surface, which results in temporal oscillations in secondary ion density, secondary ion current, and space potential. Such oscillations tend to be suppressed by higher temperature of ions, and the oscillation period decreases as the secondary ion yield increases. This paper reports the simulation results and discusses the physical implications of the results.

欧州宇宙機関 ESA と JAXA が共同で推進する長周期彗星探査計画 Comet Interceptor ミッションに向けた研究開発が進められている。彗星は8割以上が水分子で構成されており、表面は常に蒸発しているため、彗星の周囲には水分子を主とする中性粒子が豊富に存在し、これらが高速で探査衛星に衝突すると、その表面から二次粒子(電子・イオン)が放出される。二次粒子は彗星プラズマを観測する際に不要な粒子検出成分となる上、放出に伴って衛星電位を変化させる。

本研究では、衛星からの二次粒子放出が帯電や周囲プラズマ環境に与える影響を明らかにするため、PIC 法に基づいたプラズマ粒子シミュレーションを行った。結果として、放出された二次イオンは衛星近傍に高密度に分布し、正の電位バリアを形成することが示された。この高密度の二次イオンがもたらす空間電位構造によって、彗星プラズマ電子と衛星から放出された二次電子も衛星周辺で高密度に分布することが確認された。このような空間電荷効果によって形成される電位構造は、衛星で実施が予定される低エネルギーイオン観測にも影響を及ぼすことが示唆される。

さらに電位バリアの形成条件を明らかにするために二次イオン放出面近傍に着目した 1 次元シミュレーションを実施した。電位バリア形成の有無は二次イオン放出量と二次イオン温度に依存し、特に温度が高いとバリアの形成は抑制される傾向にある。詳細なパラメトリック解析の結果、電位バリアを抑制するために必要な最低二次イオン温度は二次イオン放出量の約 2.5 乗に比例することが分かった。

加えて、二次イオン放出量を空間電荷制限電流以上に設定した場合には、電位バリアへの電荷蓄積と減衰が繰り返され、二次イオン密度・二次イオン電流・空間電位が時間的に振動する現象が観測された。この振動はイオンの熱速度によって減衰することや、二次イオン放出量を大きくすると振動の周期が小さくなるといった振る舞いも確認した。本発表では、これらのシミュレーション結果を報告するとともに、結果の物理的意味について議論する。

C会場: 11/27 AM1 (9:15-10:45)

10:15~10:30:00

Physics-Informed Neural Networks (PINNs) を用いたプラズマニ流体計算

#河野 凌 $^{1)}$, 松清 修一 $^{1)}$, 諌山 翔伍 $^{1)}$

Plasma two-fluid simulation using Physics-Informed Neural Networks (PINNs)

#Ryo Kono¹⁾, Shuichi MATSUKIYO¹⁾, Shogo ISAYAMA¹⁾

(1 Kyushu University, Interdisciplinary Graduate School of Engineering Sciences

Helicon plasma sources, which can stably generate high-density and low-temperature plasmas, are expected to be applied in a wide range of fields such as accelerators, electric propulsion, nuclear fusion, and space simulation experiments. However, experimental studies have reported a so-called "density limit," where the plasma density is limited to approximately 10^{19} m⁻³ [1]. One possible cause of this phenomenon is considered to be the depletion of neutral particles in high-density plasma regions. To understand detailed mechanism of the depletion of neutral particles, the analyses based on three-fluid models including electrons, ions, and neutral particles have been conducted [2]. Since the transport of neutral particles mainly depends on collisions with ions, a proper understanding of plasma – neutral interactions is essential for elucidating the density limit. To accurately analyze these interactions, two-fluid calculations for electrons and ions that take sheath electric fields into account are required. In high-density regimes, Newton method based on implicit schemes is typically employed, but their parallelization efficiency is low, and the computational cost is high. Due to these computational constraints, analyses have been limited to one-dimensional models, which represents a major obstacle to understanding the physical mechanisms behind the density limit.

In this study, we focus on Physics-Informed Neural Networks (PINNs), a deep learning framework that has recently attracted attention as a novel approach for solving partial differential equations, to overcome the computational bottleneck in fluid simulations. PINNs not only enable mesh-free computation but also allow fast and accurate evaluation of differential terms via automatic differentiation and are well suited for efficient GPU parallelization. Compared with conventional numerical methods, PINNs are expected to achieve high computational efficiency while maintaining accuracy. In this work, we apply PINNs to the plasma two-fluid model and establish a new computational framework for multidimensional analysis of high-density plasmas. In this presentation, we introduce the development of our PINNs-based model, focusing on a normalization scheme to address the multiscale nature of electrons and ions, as well as discussing the impact of loss function and boundary condition on the simulation results.

[1]R.M.Magee et al., Phys.Plasmas 20, 123511 (2013) [2]S.Isayama et al., Phys.Plasmas 26, 053504 (2019)

高密度かつ低温のプラズマを安定して生成可能なヘリコンプラズマ源は加速器、電気推進機、核融合、宇宙模擬実験など、幅広い応用が期待されている。一方で、実験ではプラズマ密度がおよそ $10^{19}~\mathrm{m}^{-3}$ にとどまる「密度限界」が報告されており [1]、その詳細なメカニズムの解明は今後の応用展開に向けた重要課題である。密度限界の一つの要因として高密度プラズマ領域における中性粒子枯渇が考えられており、電子・イオン・中性粒子を含む三流体モデルによる解析が行われている [2]。中性粒子の輸送は主にイオンとの衝突に依存するため、密度限界の物理解明にはプラズマと中性流体の相互作用を正しく理解することが不可欠である。この相互作用を正確に解析するには、シース電場を考慮した電子・イオンの二流体計算が必要となる。高密度領域では陰解法に基づくニュートン法が用いられるが、並列化効率が低く計算負荷が大きい。この計算コストの制約により、解析は一次元モデルに限定され、密度限界の物理解明に向けた大きな障壁となっている。

本研究では、流体計算のボトルネックを克服するため、偏微分方程式を解く新たな手法として近年注目されている深層 学習手法 Physics-Informed Neural Networks(PINNs)に着目した。PINNs はメッシュフリーの計算が可能であることに 加え、自動微分による高速かつ高精度な微分項の取得、高効率な GPU 並列に適しており、従来の数値解法と比較して計算精度を保ちつつ高速化が期待される。本研究では PINNs をプラズマ二流体モデルへ適用し、高密度プラズマの多次元数値解析に向けた新たな計算基盤技術の構築を目指す。本発表では、現在開発中の PINNs 計算モデルについて、特に電子とイオンのマルチスケール性に対応する規格化手法の提案および損失関数の設計や境界条件が計算結果に与える影響について議論する。

[1]R.M.Magee et al., Phys.Plasmas 20, 123511 (2013)

[2]S.Isayama et al., Phys.Plasmas 26, 053504 (2019)

C会場:11/27 AM2(11:05-12:35)

11:05~11:20:00

#梅田 隆行 ¹⁾ ⁽¹ 北大基盤センター

Loading of relativistic Maxwellian-type distribution revisited

#Takayuki Umeda¹⁾

(1 Information Initiative Center, Hokkaido University

A numerical generator for random variates from a relativistic Maxwellian-type distribution is an important tool in particle-in-cell simulations and test-particle calculations. Conventionally, a relativistic Maxwellian momentum distribution is widely assumed as an initial distribution, which is known as the Maxwell-Juttner distribution. For generating random variates from the Maxwell-Juttner distribution, rejection methods are adopted. In the present study, generation of random variates from a relativistic Maxwellian energy distribution is examined as an alternative to the Maxwell-Juttner distribution. A simple numerical procedure for generating random variates from an energy distribution based on the inverse transform sampling is presented, which adopts the same procedure as a non-relativistic energy distribution. Then, the coordinate transform from the energy space to the momentum vector space is made.

C会場: 11/27 AM2(11:05-12:35) 11:20~11:35:00

#飯島 陽久 ¹⁾ ⁽¹ 名大

Secondary conservative finite difference scheme for compressible magnetohydrodynamics in orthogonal curvilinear coordinates

#Haruhisa Iijima¹⁾
(1Nagoya University

The compressible magnetohydrodynamic (MHD) equations describe macroscopic plasma dynamics and are widely used in space plasma simulations. A key feature of this system is that the total energy, i.e., the sum of internal, kinetic, and magnetic energies, is conserved in a closed system. To quantitatively understand plasma heating in low-beta environments such as the solar corona, it is essential to accurately capture the transport and conversion of magnetic energy.

We previously proposed, in Cartesian coordinates, a new finite-difference scheme that exploits the discrete product rule to achieve secondary conservation (Iijima, J. Comput. Phys. 435, 110232, 2021). Without explicitly solving the internal-, kinetic-, and magnetic-energy equations separately, the scheme preserves interconversion among these energies exactly at the level of spatial discretization, enabling robust simulations in extremely low plasma-beta environments while maintaining strict total-energy conservation.

In this work, we report an extension to orthogonal curvilinear coordinates. We derive a discrete formulation that retains key properties (such as angular-momentum conservation in spherical coordinates) while achieving the same discrete energy consistency as in the Cartesian case.

R008-19 C会場: 11/27 AM2(11:05-12:35)

11:35~11:50:00

#吉川 顕正 ¹⁾ ⁽¹ 九大・理

Beyond Surfaces: Twist and Curvature in the Skeleton Geometry of Magnetic and Fluid Fields via the Extended Frenet Frame

#Akimasa Yoshikawa1)

⁽¹Faculty of Science, Kyushu University

This study reports on a new approach to the geometrical understanding of highly complex magnetic field structures that emerge in association with the dynamics of space and fusion plasmas. The objects of investigation are vector fields defined in three-dimensional space, such as magnetic fields and fluid velocity fields. Although these can be understood within ordinary Euclidean space, it is more natural to employ the language of manifolds for their analysis. This is because coordinate systems and bases vary with position, and their changes must be described using connections and differential forms. In this sense, the analysis of vector fields in Euclidean space can be regarded as a special case of vector field analysis on manifolds. However, while mathematically elegant, this framework has often been perceived as overly abstract, offering limited physical insight for researchers in magnetospheric and fluid sciences.

Traditional approaches to the structure of three-dimensional vector fields are diverse, including the tracing of streamlines, the use of conservation laws and potentials, the computation of divergence and curl, topological classifications, dynamical-systems analysis, and visualization through numerical simulations. These methods have provided only fragmentary geometrical insights, and in particular, no systematic framework has existed for actively representing non-integrable structures. This study aims to construct a new theoretical framework based on connection 1-forms together with curvature and torsion 2-forms, establishing a geometrical foundation that captures structures consistently from local features to global configurations.

In this framework, the torsion 2-form is used to determine whether the flow of a given two-dimensional directional field is constrained to an integrable surface under parallel transport, or whether it escapes outward with twist to form a three-dimensional non-integrable structure. The curvature 2-form, on the other hand, allows one to measure quantities corresponding to the Gaussian and mean curvatures of an integral surface in the integrable case, while in the non-integrable case it quantifies the accumulation of three-dimensional rotational distortion that cannot be reduced to a surface. In this way, the torsion and curvature 2-forms serve as tools to characterize vector field structures in terms of their off-surface behavior and rotational accumulation, respectively, thus distinguishing integrable from non-integrable configurations.

The Extended Frenet Frame introduced in this study provides a novel scheme that fundamentally changes the situation. Vector fields are directly expressed in terms of geometrical quantities such as curvature and torsion of local frames, and their structures are organized according to the dichotomy of integrable versus non-integrable, including transitions and intermediate states between them. This approach makes it possible to describe integrability, previously understood only in terms of the existence or absence of integral surfaces, as a clear geometrical image of natural phenomena. In particular, magnetic reconnection and vortex generation/decay can be interpreted geometrically as transitions from "surface-constrained structures" to "three-dimensional rising structures."

Potential applications are wide-ranging, including the analysis of non-integrable magnetic structures in the magnetosphere and solar wind, the evaluation of magnetic confinement stability in fusion research, and the study of vortex and turbulence structures in fluid and atmospheric sciences. Furthermore, by directly extracting geometrical indicators from observational data and numerical simulations, this framework offers a new analytical method that bridges theory, observation, and computation. In sum, the study presents a new system of vector field geometry based on integrability, non-integrability, and their transitions, contributing to a unified understanding of complex fields in nature.

宇宙空間プラズマや核融合プラズマのダイナミクスとともに生成される高度に複雑な磁場構造の幾何学的理解に迫る新しいアプローチについて報告する。本研究で対象とするのは、3次元空間に定義された磁場や流体速度場などのベクトル場である。通常のユークリッド空間におけるベクトル場として理解できるが、解析にあたっては多様体の言葉を用いる方が自然である。なぜなら、座標系や基底は位置に依存して変化し、その変化を記述するには接続や微分形式が不可欠であるからである。したがってユークリッド空間のベクトル場解析は、多様体上のベクトル場解析の特別な場合とみなせる。しかしこの方法論は形式的には美しいものの物理的意義が曖昧であり、磁場や流体の研究者には抽象的に過ぎると受け止められてきた。

3次元ベクトル場の構造に迫る従来のアプローチは、流線の追跡、保存則やポテンシャルによる記述、発散や回転の計算、トポロジー的分類、力学系的解析、数値シミュレーションによる可視化など多岐にわたる。しかしながら、これらは断片的な幾何構造の理解を与えるに留まり、特に非可積分構造を積極的に表現する体系は存在しなかった。本研究は接続1形式と曲率・捻れ2形式を用いた新しい理論体系を構築し、局所から大局までを一貫して捉える幾何学的基盤を確立す

ることを目的とする。ここで捩れ 2 形式を用いることで、与えられた 2 次元方向場のフローが可積分面上に拘束され平行移動するのか、あるいはねじれを伴って面外へ流出し、3 次元的な非可積分構造を形成するのかを幾何学的に判定できる。また曲率 2 形式を用いることで、可積分な場合には積分曲面上のガウス曲率や平均曲率と対応する量を計測でき、非可積分な場合には曲面に還元できないフローの立体的回転の蓄積を定量化できる。すなわち、捩れ 2 形式と曲率 2 形式は、それぞれベクトル場の「面外性」と「回転蓄積」を測る道具として、可積分・非可積分双方の構造を特徴づける役割を果たす。

本研究で導入する拡張 Frenet フレームは、この状況を一変させる斬新な枠組みを提供するものである。ベクトル場を局所フレームの曲率やねじれといった幾何学的特徴で直接記述し、可積分/非可積分という二分法に基づきつつ、その相互遷移や中間状態も含めて構造を整理する。この方法により、従来「積分曲面の有無」でしか理解されなかった可積分性を、自然現象の幾何像として明確に記述できる。特に、磁気リコネクションや渦の生成・崩壊を「曲面に落ちる構造」から「立体的に立ち上がる構造」への遷移として幾何学的に捉えることが可能となる。

応用的展開としては、宇宙物理学における磁気圏や太陽風の非可積分的磁場構造、核融合研究における磁場閉じ込めの安定性評価、流体や大気科学における乱流や大規模循環の渦構造など、広範な対象に及ぶ。また観測データや数値シミュレーションから幾何学的指標を直接抽出することで、理論と観測・数値を結ぶ新しい解析手法を提供する。本研究は、可積分性/非可積分性とその遷移を基盤とするベクトル場幾何の新体系を提示し、自然界における複雑な場の統一的理解に寄与するものである。

C会場: 11/27 AM2 (11:05-12:35)

11:50~12:05:00

ブラソフ方程式とシュレーディンガー方程式の対応関係について

#松本 洋介 $^{1)}$, 川上 剛太郎 $^{2)}$, 吉川 耕司 $^{3)}$, 簑島 敬 $^{4)}$, 吉田 直紀 $^{5)}$ $^{(1)}$ 千葉大学, $^{(2)}$ 東京科学大学, $^{(3)}$ 筑波大学, $^{(4)}$ 海洋研究開発機構, $^{(5)}$ 東京大学

On Vlasov-Schrodinger equations correspondence

#Yosuke Matsumoto¹⁾, Gotaro Kawakami²⁾, Kohji Yoshikawa³⁾, Takashi MINOSHIMA⁴⁾, Naoki Yoshida⁵⁾
⁽¹⁾Chiba University, ⁽²⁾Institute for Science Tokyo, ⁽³⁾Tsukuba University, ⁽⁴⁾JAMSTEC, ⁽⁵⁾University of Tokyo

A new numerical approach, the Schrodinger method, has emerged to solve the Vlasov-Poisson equation in cosmological self-gravity systems. This method deals with the Wigner function, which can be reconstructed from the wave function of the Schrodinger equation, as a classical distribution function in phase space. The method has successfully reproduced the results obtained from the Vlasov simulations. This study re-examines the Schrodinger method for its application to astrophysical plasma. We first confirmed that the time evolution of the Wigner function follows the Vlasov equation in the classical limit. We also found that errors introduced by the quantum effects scaled with the square of the ratio of the quantum scale to the plasma scale. Using a newly developed numerical code to solve the time-dependent Schrodinger equation, we accurately reproduced plasma oscillations in one-dimensional electrostatic plasma. Furthermore, we observed that numerical errors arose from the quantum effect scaled as the scale ratio with an index of 1.6. This presentation will discuss the correspondence between the Vlasov and Schrodinger equations and the numerical advantages of the Schrodinger method over the kinetic plasma simulations.

天体現象で普遍的に見られる無衝突衝撃波や磁気リコネクションにおけるプラズマ加熱・輸送を理解するためには、運動論的プラズマを記述する第一原理である Vlasov 方程式を解く必要がある。電磁場と併せた Vlasov-Maxwell (Poisson) 系は強い非線形システムのため、Particle-in-Cell (PIC) シミュレーションなどの手法で数値的に解かれることが一般的である。特に、Vlasov-Poisson 系は静電プラズマを記述するだけでなく、自己重力系の宇宙大規模構造を記述する基礎方程式としても知られ、同様に粒子計算法が標準的に採用されてる。近年では、計算機能力の増大により、Vlasov 方程式を直接 Euler 的に解く Vlasov シミュレーションが行われるようになってきた。いずれにしても、位置・運動量空間内の粒子の分布関数を保持する必要があり、計6次元空間内の膨大なサンプリング(粒子法)またはメモリでの保持(Vlasov法)のため、最新のスーパーコンピューターをもってしても、その適用範囲には限りがある。

こうした中、宇宙大規模構造を明らかにする宇宙論分野では Schrodinger 方程式に基づく Schrodinger 法を用いた Vlasov-Poisson 方程式の数値解法と応用が報告されるようになってきた。 Schrodinger 方程式で記述される波動関数から 再構築する Wigner 関数(より最近は伏見関数)を位相空間内の古典的分布関数とみなすことで、Schrodinger-Poisson 系を解くものである。 Wigner 関数を分布関数としてみなした場合、Schrodinger 方程式は量子効果による誤差を残した形の Vlasov 方程式に帰着することが示されている(Fiex, 1970)。本関係を利用して、Schrodinger 方程式を数値的に解き、各時刻における波動関数から Poisson 方程式を解く手法が、静電プラズマ (Bertrand et al., 1980), 自己重力系 (Widrow et al., 1993) で応用例が報告された。その後報告例が途絶えたが、Kopp et al. (2017) を皮切りに、宇宙論分野で報告が続いている。

本研究では、当初静電プラズマで応用された Schrodinger 法を天体プラズマへの応用に向けて再検討を行う。Wigner 関数が満たす時間発展方程式は古典極限で Vlasov 方程式に帰着することを確認し、量子効果による誤差は量子スケールとプラズマスケールの比の 2 乗でスケールすることがわかった。時間発展 Schrodinger 方程式を解く数値コードを新たに開発し、1 次元静電プラズマへの応用を試みた結果、Schrodinger 法によってプラズマ振動を正確に再現することに成功した。また数値実験からは、量子スケール・プラズマスケールの比の 1.6 乗で量子誤差が減ることが明らかになった。本発表では、Vlasov 方程式と Schrodinger 方程式の対応関係、Schrodinger 法の Vlasov 計算法に対する数値的利得について議論を行う。

C 会場 : 11/27 AM2(11:05-12:35)

12:05~12:20:00

Koopman-von Neumann 線形化を用いた非線形電磁流体力学のための量子アルゴリズム

#樋口 颯人 $^{1,2)}$, 伊藤 優輝 $^{3)}$, 坂本 一樹 $^{3)}$, 藤井 啓祐 $^{3,4)}$, ピダーセン 珠杏 $^{4)}$, 吉川 顕正 $^{2)}$ $^{(1}$ キュナシス, $^{(2}$ 九州大学, $^{(3}$ 大阪大学, $^{(4}$ 理化学研究所

A quantum algorithm for nonlinear electromagnetic fluid dynamics using Koopman-von Neumann Linearization

#Hayato Higuchi^{1,2)}, Yuki Ito³⁾, Kazuki Sakamoto³⁾, Keisuke Fujii^{3,4)}, Juan Pedersen⁴⁾, Akimasa YOSHIKAWA²⁾
⁽¹QunaSys Inc., ⁽²Kyushu University, ⁽³The university of Osaka, ⁽⁴RIKEN

To predict and simulate plasma phenomena, large-scale computational resources have been utilized to develop high-precision, high resolution plasma simulations. However, multi-scale plasma simulations require computational resources that grow as high-order polynomials with the number of spatial grid points, posing a major challenge for large-scale modeling. In this study, we propose a quantum algorithm for simulating the nonlinear electromagnetic fluid dynamics that govern space plasmas. By applying Koopman-von Neumann (KvN) linearization, we map the nonlinear electromagnetic fluid system to a Schrödinger equation and evolve it in time through Hamiltonian simulation based on quantum singular value transformation (QSVT). This approach significantly reduces the computational complexity compared with classical finite volume schemes, achieving more efficient scaling with respect to the number of spatial grid points. Furthermore, numerical experiments quantify the combined errors arising from discretization, KvN linearization, and QSVT-based Hamiltonian simulation. As a practical demonstration, the method successfully reproduces the early growth stage of the Kelvin-Helmholtz instability, demonstrating its capability to capture nonlinear dynamics. These findings suggest that quantum computing can provide a promising pathway to overcome the computational barriers inherent in traditional multi-scale plasma modeling.

プラズマ現象を予測・シミュレーションするために、大規模な計算資源が用いられ、高精度かつ高分解能のプラズマシミュレーションが開発されてきました。しかし、マルチスケールなプラズマシミュレーションは、空間格子数に対して高次の多項式的に計算資源が増大するため、大規模モデリングにおいて大きな課題となっています。本研究では、宇宙プラズマを支配する非線形電磁流体力学系をシミュレートするための量子アルゴリズムを提案します。Koopman – von Neumann (KvN) 線形化を適用することで、非線形電磁流体力学系をシュレディンガー方程式に写像し、量子特異値変換 (QSVT) によるハミルトニアンシミュレーションで時間発展を行います。本手法により、古典的な有限体積法に基づくスキームの計算複雑性を大幅に削減し、格子点数に対する効率的なスケーリングを実現します。さらに数値実験により、離散化、KvN 線形化、および QSVT-ハミルトニアンシミュレーションに由来する誤差の複合的な挙動を定量化しました。実際的な実証例として、本手法はケルビンーヘルムホルツ不安定性の初期成長過程を再現し、非線形ダイナミクスを扱う能力を示しました。これらの結果は、量子計算が従来のマルチスケールなプラズマモデリングにおける計算障壁を克服する有望な手段となり得ることを示唆しています。

ポスター2:11/25 PM1(13:45-15:45)

非定常衝撃波の大型レーザー実験

#高橋 住夏 $^{1)}$, 松清 修一 $^{1)}$, 諫山 翔伍 $^{1)}$, 佐藤 弓真 $^{1)}$, 森田 太智 $^{1)}$, 山崎 了 $^{2)}$, 田中 周太 $^{2)}$, 竹崎 太智 $^{3)}$, 富田 健太郎 $^{4)}$, 境 健太郎 $^{5)}$, 蔵満 康浩 $^{6)}$, 佐野 孝好 $^{7)}$, 坂和 洋一 $^{7)}$

 $^{(1)}$ 九大・総理工 $^{(2)}$ 青山学院大・理工 $^{(3)}$ 富山大 $^{(4)}$ 北海道大 $^{(5)}$ 核融合研 $^{(6)}$ 阪大・工・電気 $^{(7)}$ 阪大・レーザー研

High-power laser experiment of nonstationary collisionless shock

#Kana Takahashi¹⁾, Shuichi Matsukiyo¹⁾, Shogo Isayama¹⁾, Yuma Sato¹⁾, Taichi Morita¹⁾, Ryo Yamazaki²⁾, Shuta Tanaka²⁾, Taichi Takezaki³⁾, Kentaro Tomita⁴⁾, Kentaro Sakai⁵⁾, Yasuhiro Kuramitsu⁶⁾, Takayoshi Sano⁷⁾, Youichi Sakawa⁷⁾

(¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, (²Faculty of Engineering Sciences, Aoyama Gakuin University, (³Toyama University, (⁴Hokkaido University, (⁵National Institute for Fusion Science, (⁶Department of Electrical Engineering, Graduate School of Engineering, Osaka University, (⁷Institute of Laser Engineering, Osaka University

Collisionless shocks play an essential role as energy converters in space and are considered promising candidates for cosmic ray accelerators. However, many aspects of their fundamental structure remain unresolved. It is known that supercritical shocks with high Mach numbers often fail to maintain a steady shock front. Empirical studies of non-stationary shocks have traditionally been conducted through in-situ observations using artificial satellites. Because such observations are restricted to limited sampling points, it is difficult to directly capture shock front fluctuations. Instead, it is important to remotely detect the temporal variations of physical quantities, reflecting the fluctuations of the shock surface near the wave front. In contrast, recent laboratory experiments on collisionless shocks enable us to continuously capture the spatiotemporal evolution of the shock, making it possible to measure shock front fluctuations directly.

In the experiments, a laser is irradiated onto a solid target inside a chamber filled with dilute gas. The irradiation instantaneously ionizes both the gas and the target, and the target plasma compresses the gas plasma to generate a shock. Furthermore, by using Helmholtz-type coils, we realized conditions in which the gas plasma is magnetized under an externally applied magnetic field.

In the 2024 experiments, helium gas and carbon target were used, with variations in gas pressure and external magnetic field strength. Self-emission streak measurements were employed to capture the time evolution of emission from plasma passing through a linear slit aligned with the shock propagation direction. By analyzing the spatial profile of emission intensity along the slit and identifying the location of maximum gradient as the shock surface, we found that the gradient periodically varies in time. The period was on the order of the inverse ion cyclotron frequency.

In the 2025 experiments, we will focus on how the amplitude of shock front fluctuations changes with shock velocity (Mach number). In the presentation, we will discuss these issues together with new experimental data to be obtained in September.

無衝突衝撃波は宇宙におけるエネルギー変換器として重要な役割を担い、宇宙線加速器の有力な候補とされている。しかしながら無衝突衝撃波の基本構造には未解明な点も多い。マッハ数の高いいわゆる超臨界衝撃波では、しばしば定常な波面構造が維持されないことが知られている。非定常衝撃波の実証的研究は、従来人工衛星を用いたその場観測により行われてきた。観測点が限られるその場観測では、波面の揺らぎを直接とらえることは難しいため、波面の揺らぎを反映した物理量の時系列データの変動を波面近傍でリモートにとらえることが重要となる。これに対して、我々が近年取り組んでいる無衝突衝撃波の室内実験では、衝撃波構造の時空間発展を連続的にとらえることができるため、波面の揺らぎを直接的に計測することが可能である。

実験では、チャンバー内に希薄ガスを充填した状態で、固体ターゲットにレーザーを照射する。レーザー照射によりガスおよびターゲットが瞬時にプラズマ化し、ターゲットプラズマがガスプラズマを圧縮することで衝撃波が生成される。さらに、ヘルムホルツ型のコイルにより外部磁場を印加し、プラズマを磁化する条件も実現した。

2024年度の実験では、ガスにヘリウム、ターゲットに炭素を用い、ガス圧および外部磁場強度を変化させた。自発光ストリーク計測により、衝撃波の伝搬方向に沿った直線状のスリットを通ったプラズマからの自発光データの時間変化をとらえた。スリットに沿った自発光強度の空間波形を解析し、その空間勾配が最大となる位置を衝撃波面と同定して、勾配の時間変化をプロットしたところ、周期的な変動が見られた。その周期はガスイオンのサイクロトロン周波数の逆数のオーダーであった。

2025年度の実験では、衝撃波速度(マッハ数)を変えて波面揺らぎの振幅などに変化が見られるかに注目する。発表では、9月に得られる予定の新たな実験データを交えて議論を行う。

ポスター2:11/25 PM1 (13:45-15:45)

MMS 衛星による高域混成波高調波及びラングミュア波高調波の統計解析

#小谷 翼 $^{1)}$, 丹治 史哉 $^{2)}$, 小池 春人 $^{1)}$ (1 京大理. $^{(2)}$ 京大エネ科

Statistical analysis of harmonic upper hybrid and Langmuir waves observed by the MMS spacecraft

#Tsubasa Kotani¹), Fumiya Tanji²), Haruto KOIKE¹)

(1 Graduate School of Science, Kyoto University, (2 Graduate School of Energy Science, Kyoto University)

Waves near the electron plasma frequency, such as upper hybrid waves and Langmuir waves, are often observed in the Earth's magnetosphere. Recently, harmonics of upper hybrid waves were observed in the electron diffusion region of magnetotail reconnection [Dokgo+2019; Li+2021], and they were believed to be generated by energetic electrons. However, since these harmonic waves were observed only in a few cases, their detailed characteristics, including their excitation conditions, generation regions, and their roles, are still unknown. In this study, we analyze harmonics of upper hybrid and Langmuir waves in the Earth's magnetosphere observed by the MMS spacecraft and report our preliminary results.

ポスター2:11/25 PM1(13:45-15:45)

強磁場環境下における相対論的アルフベン波のパラメトリック不安定性

#中原 寛太 $^{1)}$, 松清 修一 $^{1,2)}$, 諌山 翔伍 $^{1,2)}$ $^{(1)}$ 九大総理工, $^{(2)}$ 九大・総理工

Parametric instabilities of a relativistic Alfvén wave in strong magnetic fields

#Kanta NAKAHARA¹⁾, Shuichi MATSUKIYO^{1,2)}, Shogo ISAYAMA^{1,2)}

⁽¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, ⁽²Faculty of Engineering Sciences, Kyushu University

Large-amplitude Alfvén waves are ubiquitous in space and are believed to play an important role in the acceleration of high-energy cosmic rays. Numerous particle acceleration models by large-amplitude plasma waves have been proposed. In this study, we focus on coherent wave – particle interactions in developing turbulence under astrophysical conditions where relaxation time is long enough. Previous studies have shown that in the low- σ regime (σ <1), large-amplitude Alfvén waves undergo parametric instability, decaying into a forward-propagating sound wave and a backward-propagating Alfvén wave. Here, σ denotes the magnetization parameter. Matsukiyo & Hada (2009) reported that efficient particle acceleration occurs interacting with counter-propagating Alfvén waves. Furthermore, Isayama et al. (2023) revealed that when the amplitude of the parent wave exceeds a threshold, a phase transition arises in the particle dynamics in phase space, leading to rapid acceleration of particles regardless of their initial energy. This amplitude threshold depends solely on the wavenumber and frequency of the parent wave. Such an acceleration mechanism is expected to operate in environments such as the vicinity of magnetars. However, parametric instabilities of large-amplitude Alfvén waves in strong magnetic fields like those near magnetars have not been thoroughly investigated. In this study, we conducted one-dimensional particle-in-cell simulations to examine the parametric instabilities of a large-amplitude Alfvén wave in strong magnetic fields. By varying the magnetization parameter and parent wave amplitude, we found that the nature of the decay instability qualitatively changes depending on the parameters. In this presentation, we will report on the parameter dependence of this decay process.

宇宙には大振幅アルフベン波が普遍的に存在し、高エネルギー宇宙線加速において重要な役割を果たすと考えられている。これまでにも、大振幅プラズマ波動による粒子加速モデルが数多く提案されてきた。本研究では、緩和時間が十分に長い宇宙環境において、発展途上の乱流におけるコヒーレントな波動一粒子相互作用に着目する。先行研究では、低 σ 領域 (σ <1) において、大振幅アルフベン波がパラメトリック不安定性を介して崩壊し、親波と同方向に伝播する音波及び逆方向に伝播するアルフベン波の子波を生成することが示されている。ここで、 σ は磁化パラメータである。Matsukiyo & Hada (2009) は、対向伝播する二つのアルフベン波から成る定在波構造の中で高効率な粒子加速が起こることを報告している。さらに、親波の振幅が閾値を超えると、位相空間における粒子の振る舞いに相転移が生じ、粒子は初期エネルギーに依らず短時間で相対論的エネルギーを獲得することが Isayama et al. (2023) により報告されている。この振幅の閾値は親波の波数と周波数のみで決まる。この加速機構がはたらく環境として、マグネター周辺などが考えられる。しかしながらマグネター周辺のような強磁場環境におけるパラメトリック不安定性はこれまであまり詳しく調べられていない。本研究では、強磁場環境下における大振幅アルフベン波のパラメトリック不安定性を 1 次元 PIC シミュレーションにより調査した。磁化パラメータと親波の振幅を様々に変えた計算を行ったところ、パラメータによって崩壊不安定性の起こり方が定性的に変わることを見出した。発表では、この崩壊過程のパラメータ依存性について報告する。

ポスター2:11/25 PM1 (13:45-15:45)

#凡 雨萌 $^{1)}$, 松清 修一 $^{1)}$ $^{(1)}$ 九州大学

Plasma instabilities in a bounded system

#Yumeng Fan¹⁾, Shuichi MATSUKIYO¹⁾
⁽¹Kyushu University

In space and astrophysical plasmas, the system size is often much larger than the characteristic scale of the phenomena, and in such cases the influence of the boundary can often be neglected. However, in some problems, the system size can be comparable to the characteristic scale of the phenomena. We considered a system in which a beam exists within a finite-sized sheet region bounded by strong magnetic fields, and carried out a linear mode analysis. It was found that only waves with discrete wavenumbers perpendicular to the beam can be excited within the region, and that these wavenumbers depend on system parameters.

As an example of such a system, we consider a current sheet bounded by strong magnetic fields. In situations such as during magnetic reconnection, beams or temperature anisotropies can form in the direction perpendicular to the sheet current. To model this, we performed two-dimensional full particle simulations with varying sheet thickness. When the sheet thickness was not very large, oblique propagation modes were excited within the sheet, similar to those reported by Lu et al. (2011). When the sheet thickness became significantly larger than the ion inertial length, Weibel instabilities propagating perpendicular to the sheet dominated near the center of the sheet which is consistent with the linear analysis in Infinite homogeneous plasma, while oblique propagation modes dominated near the edges. In this presentation, we will discuss the conditions for the excitation of oblique propagation modes.

ポスター2:11/25 PM1(13:45-15:45)

局所磁場を有する月永久影領域における静電プラズマ環境の粒子シミュレーション

#土田 新太 $^{1)}$, 中園 仁 $^{1)}$, 三宅 洋平 $^{1)}$ $^{(1)}$ 神戸大学大学院システム情報学研究科

Particle Simulation of Electrostatic Plasma Environment in Permanently Shadowed Regions of the Moon with Localized Magnetic Fields

#Arata TSUCHIDA¹⁾, Jin NAKAZONO¹⁾, Yohei MIYAKE¹⁾
(1 Graduate School of System Informatics, Kobe University

In airless planetary bodies such as the Moon, the solar wind plasma precipitates directly onto the surface. The plasma charge deposition on the surface and the photo-emitted electron current determine the dayside, near-surface electrostatic environment. Although the Moon has no global intrinsic magnetic field like the Earth, it is widely known that there are locally magnetized crusts (magnetic anomaly). This region is suggested to have distinctive plasma environments and electric field structures. In particular, it is speculated that water ice exists stably for long periods of time in permanently shadowed regions with magnetic anomalies, but the detailed mechanism is not yet clear. Elucidating the preservation mechanism is important for future exploration missions and resource utilization. However, direct observational data is currently limited to upper altitudes, and there is a lack of information on the plasma and electromagnetic environment at lower altitudes.

The present numerical study considers a situation in which a permanent shadow is formed by solar wind plasma pouring down at an angle close to parallel with a depression containing a small dipole magnetic field in the ground. Using the PIC (Particle-In-Cell) method, we conducted a three-dimensional plasma particle simulation and analysed the electrostatic environment and plasma dynamics near the permanent shadow region with a localized magnetic field.

Consequently, in terms of potential and density distribution, it was demonstrated that, in a magnetic dipole moment configuration parallel to the lunar surface, a high-potential region forms at the center of the field and a potential difference occurs between the up- and down-stream sides of the solar wind. Meanwhile, in a magnetic dipole moment configuration perpendicular to the lunar surface, a potential gradient was confirmed to be formed within the magnetized region and in the vertical direction of the solar wind velocity vector. Additionally, it was shown that small-scale magnetic fields can influence electron motion within permanently shadowed terrain, resulting in electron penetration. Through analyzing current density and particle trajectories, it was confirmed that electron gyro motions as well as electron reflection and penetration regulated by magnetic mirrors, contribute to potential formation near magnetized regions.

月を始めとする大気が希薄な固体天体では、太陽風などの宇宙プラズマが直接表面に降り注ぐ。プラズマの降り込みによる天体表面への電荷蓄積や、光電効果による光電子電流が表面近傍での静電気環境を決定づける。月には地球のような固有磁場は存在しないが、これまでの観測により局所的に磁化された地殻(磁気異常)が存在することも明らかとなっており、この領域では、通常の月面とは異なるプラズマ環境や電場構造が形成されることが示唆されている。特に、磁気異常を有する永久影領域では、水氷が長期間安定して存在すると考えられているが、その詳細なメカニズムは明らかではない。その保存メカニズムを解明することは、将来的な探査ミッションや資源利用の観点からも重要である。しかし、現在の直接観測データは上空に限られており、低高度でのプラズマおよび電磁気環境に関する情報が不足している。

そこで本研究では、地中に小規模な双極子磁場を持つ凹地に対しほぼ平行な角度で太陽風プラズマが降り注ぐため永久影が存在する状況を想定し、PIC(Particle-In-Cell) 法を用いた 3 次元プラズマ粒子シミュレーションを実施し、局所磁場を有する永久影領域付近の静電環境、粒子運動を解析することで、その帯電構造の理解を目的とした。

その結果、電位や密度分布の観点から、月面に平行なダイポール磁場では磁場中心に高電位帯が形成され、太陽風の 風上側と風下側で電位差が生じることを示した。また、月面に垂直なダイポール磁場では、磁化領域内部および太陽風速 度ベクトルの垂直方向にも電位差が生じることを確認した。さらに、永久影を形成する地形内でも、小規模な磁場が電子 の運動に影響を及ぼし、電子の侵入が起こることを示した。電流密度や粒子軌道の解析では、ローレンツ力による電子の 回転運動や、磁気ミラー効果で規定される電子の反射・流入が磁化領域近辺の電位形成に関与することを明らかにした。 ポスター2:11/25 PM1 (13:45-15:45)

月面近傍における電位・電場計測に関する数値シミュレーション

#谷口 泰斗 $^{1)}$, 栗田 怜 $^{2)}$, 中園 仁 $^{3)}$, 三宅 洋平 $^{3)}$, 臼井 英之 $^{3)}$, 小嶋 浩嗣 $^{2)}$ $^{(1)}$ 京都大学大学院工学研究科, $^{(2)}$ 京都大学生存圏研究所, $^{(3)}$ 神戸大学システム情報学研究科

Numerical Simulations of Potential and Electric Field Measurements near the Lunar Surface

#Taito TANIGUCHI¹⁾, Satoshi KURITA²⁾, Jin NAKAZONO³⁾, Yohei MIYAKE³⁾, Hideyuki USUI³⁾, Hirotsugu KOJIMA²⁾
⁽¹Graduate School of Engineering, Kyoto University, ⁽²Research Institute for Sustainable Humasnosphere, Kyoto University, ⁽³Graduate School of System Informatics, Kobe University

In recent years, exemplified by NASA's Artemis program, plans for the utilization of the lunar surface have been advancing. Once realized, such utilization is expected to serve as a base for deep space exploration as well as a new domain for human activity. However, since the Moon lacks both an atmosphere and a global intrinsic magnetic field, charging phenomena arise through interactions between the lunar surface and space plasma. Lunar surface charging is governed by the balance between the inflow of solar wind and magnetospheric plasma, and the photoelectron emission induced by solar illumination. It is considered to occur across various spatial scales, from the global scale, down to local topographic features, and even at the level of individual regolith grains. The electrostatic forces associated with surface charging may cause fine dust particles within the regolith to be lofted. Indeed, during the Apollo program, lunar dust was reported to damage spacesuits and equipment, and to have adverse effects on human health. Therefore, prior to the practical utilization of the Moon, understanding the potential and electric field structures near the lunar surface induced by surface charging is essential. At present, however, no reliable measurement techniques have been established. The purpose of this study is to devise a method for measuring the near-surface potential and electric field structures caused by lunar surface charging, through computer simulations.

For this study, we employed the three-dimensional PIC simulation code EMSES, which can resolve the charging of objects in plasma, to reproduce the lunar environment under various plasma conditions. In EMSES, diverse situations can be modeled by specifying plasma parameters such as temperature and density, as well as by defining internal boundaries representing the lunar surface and conducting bodies. As a basic setup, we assumed a solar wind plasma environment without introducing magnetic fields or photoelectrons. Within this setup, we placed the lunar surface, a large conductor situated on it, and a small conductor above it representing a probe. By sweeping the probe voltage with respect to the potential of the large conductor taken as a reference, we obtained current – voltage (I - V) characteristics and analyzed them to evaluate the plasma potential. Conventionally, plasma potential is determined from probe I - V characteristics through differential or logarithmic methods, by identifying the intersection between the saturation and transition regions. However, in the present simulations, this approach did not allow for sufficient determination. Therefore, we examined an alternative method in which a bias current was applied to the probe in order to bring its floating potential closer to the plasma potential, thereby enabling estimation of the latter.

Furthermore, in actual deployment of measurement instruments on the lunar surface, multiple options exist for their configuration. In this presentation, we report on the effects of different configurations as revealed by the simulations, and on the resulting considerations for plasma potential measurement methods.

近年、NASAのアルテミス計画に代表されるように、月面の利用計画が進められている。月利用が実現すれば、深宇宙探査の拠点や人類活動の新たな空間としての活用が期待される。しかし、月には大気や全球規模の固有磁場が存在しないため、宇宙空間プラズマと月面の相互作用によって帯電現象が生じる。月面帯電は、太陽風や磁気圏プラズマの流入と、太陽光照射による光電子放出のバランスによって決定され、全球規模から地形スケール、さらにはレゴリス粒子に至るまで、様々な空間スケールで発生すると考えられている。帯電に伴う静電気力により、レゴリスの中で特に粒径の小さいダスト粒子が舞い上がる可能性が指摘されており、実際にアポロ計画では、ダストが宇宙服や機器の損傷、さらには人体への悪影響を引き起こしたと報告されている。したがって、月面利用に先立ち、月面帯電に起因する月面近傍の電位・電場構造の理解は不可欠であるが、現在のところ正確な測定手法は確立されていない。本研究は、計算機シミュレーションを通じて、月面帯電に起因する月面近傍の電位・電場構造の測定手法を考案することを目的とする。

本研究では、様々なプラズマ環境下における月面環境を模擬するため、プラズマ中の物体帯電を解くことが可能な三次元 PIC シミュレーションコード「EMSES」を用いた。EMSES では、プラズマの温度や密度に加え、月面や導体に見立てた内部境界を定義することで、多様な状況を再現することができる。シミュレーションの基本設定として、磁場や光電子を導入していない太陽風プラズマ環境を想定し、月面とその上に配置した大導体、さらに上空にプローブに見立てた小導体を設置した。そして、大導体の電位を基準に小導体の電圧を掃引し、得られた I-V 特性を解析することでプラズマ電位を評価した。一般的には、プローブ電圧の掃引から得られた I-V 特性を微分や対数処理し、飽和領域と遷移領

域の交点からプラズマ電位を決定する手法が知られている。しかし、本シミュレーションにおいては、その方法で十分な特定を行うことが困難であった。そこで本研究では、プローブにバイアス電流を与えることでプラズマ電位と浮遊電位を近づけ、そこからプラズマ電位を推定する手法の利用を検討した。

また、実際に月面上で測定機器を配置する際には、その配置方法に複数の選択肢が存在する。本発表では、シミュレーションにより明らかになった配置の違いによる影響と、それに基づくプラズマ電位測定手法の検討結果について報告する。

#神田 芽生 $^{1)}$, 天野 孝伸 $^{2)}$ 「東京大学」 東京大学

Linear properties of machine-learning-based closure models for collisionless plasmas

#Mei Kanda¹⁾, Takanobu AMANO²⁾

(1 Graduate school of Science, The University of Tokyo, (2 Graduate school of Science, The University of Tokyo

Multiscale plasma processes govern a wide range of energetic phenomena in both laboratory and astrophysical settings, from turbulence and reconnection in Earth's magnetosphere to extreme transport conditions in accretion disks and stellar environments. A complete kinetic description of such plasmas requires solving the Vlasov equation in both configuration and velocity space. While this formalism captures the full richness of the dynamics, the associated phase space makes direct simulations prohibitively expensive for most practical applications. To mitigate this challenge, reduced fluid and moment models with appropriate closure relations are often employed. However, constructing accurate closure models that faithfully represent kinetic effects while being computationally tractable and inexpensive remains a central open problem.

Recent advances in machine learning, particularly operator-learning frameworks such as the Fourier Neural Operator (FNO), have opened new possibilities for deriving closure relations directly from kinetic simulation data. FNOs can approximate high-order closures and have been shown to predict heat flux with significant computational savings (Wei et al. 2023; Huang et al. 2025). However, these studies evaluated performance primarily in terms of data-driven accuracy, without systematic validation against classical kinetic theory. As a result, it remains unclear whether the learned models preserve fundamental physical properties or simply interpolate within the training domain. In particular, the consistency of FNO-based closures with well-established linear theories of Landau damping and heat flux (Hammett and Perkins, 1990; Hammett et al. 1992) has not yet been demonstrated.

In this work, we test whether FNO-based closure models are capable of reproducing the linear response properties captured in classical closures. Our investigation proceeds in two stages. First, we reproduce prior FNO-based results for heat flux prediction using particle density, velocity, and pressure fields as input, thereby verifying the reported performance of recent machine-learning models. Second, we introduce a modified FNO architecture in which nonlinear activation functions are replaced with linear ones, in order to isolate the linear component of the learned operator. The resulting predictions of heat flux are then directly compared against classical linear closure models, providing a clear benchmark for physical fidelity.

Preliminary results indicate that FNO-based closures can successfully reproduce heat flux behaviour when supplied with appropriate fluid moment data. This suggests that the operator-learning framework is sufficiently flexible to capture classical physics when data is appropriately provided. Ongoing work focuses on embedding physical and linear constraints within the operator-learning process and testing the physics of FNO closures across parameter ranges. By systematically benchmarking against both recent machine-learning models and classical linear theory, this study seeks to bridge the gap between data-driven approaches and physics-based plasma modelling. Ultimately, the goal is to develop closure models that are not only efficient and accurate but also interpretable and firmly grounded in first-principles physics.

ポスター2:11/25 PM1 (13:45-15:45)

高次精度陽的時間領域有限差分法における電荷保存則についての数値誤差の抑制 #関戸 晴宇 ¹⁾, 梅田 隆行 ²⁾ (1 名古屋大学, ⁽² 北海道大学

Suppression of Numerical Errors in the Charge Conservation Law for Finite-Difference Time-Domain Method with Higher-Order Accuracy

#Harune Sekido¹⁾, Takayuki UMEDA²⁾
(1Nagoya University, (2Hokkaido University)

This study proposes a suppression of numerical errors at current sources in the Finite-Difference Time-Domain (FDTD) method with the time-development equations using higher-order differences. The FDTD method (Yee 1966) is a numerical method for solving the time development of electromagnetic fields by approximating Maxwell's equations in both time and space with the finite difference of the second-order accuracy. A staggered grid system is used in the FDTD method, in which Gauss's law is always satisfied. Owing to this advantage, the FDTD method is used for more than a half century and applied into plasma kinetic simulations. In the FDTD method, however, numerical oscillations occur due to the error between the numerical phase velocity and the theoretical phase velocity. The FDTD(2,4) method (Fang 1989; Petropoulos 1994), which uses the fourth-order spatial difference, is proposed for reduction of the numerical errors. However, the Courant condition becomes more restricted by using higher-order finite differences in space and a larger number of dimensions. Recently, numerical methods have been developed by adding odd-degree difference terms to the time-development equations of FDTD(2,4) (Sekido & Umeda EPS 2024), which relaxes the Courant condition and reduce numerical errors in phase velocity. With those methods, computational time is reduced significantly, since longer time steps can be used. However, it has been found that there arise large numerical errors in the charge conservation law with FDTD(2,4) which uses higher-order finite differences in space. The same problem occurs with the Sekido & Umeda method. The numerical errors have a negative impact in plasma kinetic simulations. In the present study, the numerical errors in the charge conservation law are suppressed. With FDTD(2,4), the numerical errors are suppressed by adding correction terms for current densities to the time-development equations. On the other hand, with Sekido & Umeda method, it is difficult to suppress the numerical errors only with adding correction terms. Therefore, the order of numerical accuracy is changed for additional difference terms as well as additional correction terms for current densities.

本研究では、時間発展式に高次精度差分を用いた FDTD (Finite-Difference Time-Domain) 法について、電流を入力と して与える際に生じる数値誤差の修正を行った。FDTD 法は、電磁場の時間発展を解く数値計算手法であり、時間およ び空間ともに 2 次精度の差分で Maxwell 方程式を近似することで求められる (Yee 1966)。また、staggered 格子系が採 用されており、電場および磁場についての Gauss の法則が常に成り立つ。この利点により FDTD 法は電磁場計算手法と して 50 年以上に渡って用いられており、プラズマ運動論シミュレーションにも適用されている。FDTD 法では数値的な 位相速度と理論的な光速の差に依存して数値振動が生じる。この数値振動の低減のため、4 次精度の空間差分を用いた FDTD(2,4) 法が提案されている (Fang 1989; Petropoulos 1994)。しかし、近似精度の上昇および空間の高次元化に伴って Courant 条件は厳しくなるという問題を抱えていた。そこで、Courant 条件の緩和と同時に数値誤差を低減させるために、 FDTD(2,4) の時間発展式に奇数階微分項を追加する手法を開発した (Sekido & Umeda EPS 2024)。この手法では従来の 陽的 FDTD 法よりも時間ステップを長くとることができるため、プラズマシミュレーションに適用することで計算時間 の大幅な短縮が可能となる。しかし、時間発展式に高次精度差分を用いる FDTD(2,4) では、入力として電流を与えた際 に電荷保存則において数値的な誤差が生じることが明らかとなっており、同様の数値誤差が奇数階微分項を追加した手法 においても発生する。この数値誤差は静磁場の残留として出現し、プラズマシミュレーションにおいて悪影響を及ぼす。 そこで本研究では、電流を入力した際に生じる電荷保存則についての数値誤差の抑制を行った。FDTD(2,4)においては、 時間発展式に対して電流密度についての補正項を追加することにより数値誤差を抑制した。一方、奇数階微分項を追加し た手法では補正項の追加のみでの誤差の抑制は難しかった。そのため補正項の追加と同時に、追加する微分項の差分精度 の変更を行った。

ポスター2:11/25 PM1(13:45-15:45)

案内中心近似を用いた電子運動の時系列解析

#大塚 史子 ¹⁾, 松清 修一 ¹⁾, 羽田 亨 ²⁾

(1 九州大学大学院総合理工学研究院, (2 九州大学国際宇宙惑星環境研究センター

Time series analysis of electron motion based on the guiding center approximation

#Fumiko Otsuka¹⁾, Shuichi MATSUKIYO¹⁾, Tohru HADA²⁾ (¹ESST Kyushu University, (²i-SPES Kyushu University

In space plasma environments, macroscopic structures such as collisionless shocks and magnetospheres coexist with microscopic electromagnetic field fluctuations. The motion of charged particles interacting with such fields is therefore expected to exhibit complex behavior. In this presentation, we develop a time series analysis method for distinguishing between the wave and drift effects on electron energy gain. The method is tested on a simple shock structure, both with and without electromagnetic waves in the shock transition region. We assess whether the method can properly distinguish the wave and drift effects. The analysis is further applied to electrons obtained from particle-in-cell simulations to investigate electron acceleration processes in the shock transition region.

宇宙プラズマ中には衝撃波や磁気圏などの大規模構造と電磁波動のような微細構造が混在している。そのような電磁場の影響を受ける粒子の運動もまた、複数の過程から成ると考えられる。本講演では、電子加速過程を理解するために、数値計算より得られる電子軌道に対する時系列解析を行い、どの電場成分がどの程度加速に寄与するのか、定量的な議論を行う。電子軌道を案内中心のドリフト運動とそれ以外の旋回運動とに分離し、案内中心軌道を利用して粒子が感じる電場成分を平均的な成分と変動成分に分離し、それぞれの電場成分の粒子加速への寄与を定量的に評価する。テストモデルとして、衝撃波ドリフト加速が起こるようなシンプルな電磁場モデルを仮定し、衝撃波遷移層に波動がある場合とない場合でテスト粒子計算を行い、考案した時系列解析手法が波動の効果を適切に抽出できるか検証する。その際、第一断熱不変量の保存の程度や計算時間ステップ幅によって、エネルギー分離の精度がどのように変化するか議論する。本解析手法を、全粒子計算で得られる粒子軌道に応用し、加速過程の詳細な議論を行う。初期結果では、波動効果が加速に寄与すると、衝撃波ドリフト加速が抑制されることが示唆された。

ポスター2:11/25 PM1(13:45-15:45)

高次精度 FDTD 法における位相速度誤差の低減

#葛 心雨 ¹⁾, 梅田 隆行 ²⁾, 関戸 晴宇 ²⁾

(1 名古屋大学院工学研究科, (2 北海道大学情報基盤センター

Reduction of phase velocity errors in higher-order Finite-Difference Time-Domain methods

#Xinyu GE¹⁾, Takayuki UMEDA²⁾, Harune SEKIDO²⁾

(1 Graduate School of Engineering, Nagoya University, (2 Information Initiative Center, Hokkaido University

The Finite-Difference Time-Domain (FDTD) method is a fundamental approach in numerical simulations of electromagnetic waves. High-order methods often require stricter Courant – Friedrichs – Lewy (CFL) conditions and may arise numerical errors in the charge conservation law. To enable more accurate and efficient plasma simulations with less computational costs, it is important to relax CFL conditions in higher-order FDTD methods.

The present study focuses on the reduction of numerical errors while the relaxation of the CFL conditions in high-order FDTD methods. The previous study has demonstrated that the third-degree difference operator considering Laplacian can effectively relax CFL conditions and reduce anisotropic phase velocity errors in the fourth-order FDTD (Sekido+ 2024).

To further reduce phase velocity errors and thereby suppress numerical oscillations in the present study, the same approach was applied to FDTD(2,6) as the previous study. Although the CFL conditions can be relaxed, the expected reduction in phase velocity error was not achieved in FDTD(2,6) with the third-degree difference operator. A subsequent dispersion relation analysis revealed that the sixth-order scheme is unable to simultaneously minimize phase velocity errors at both $(k_x,k_y)=(\pi,\pi)$ and $(\pi,0)$ in the wavenumber space domain. In contrast, the previous FDTD(2,4) with the third-degree difference operator naturally minimize phase velocity errors at both $(k_x,k_y)=(\pi,\pi)$ and $(\pi,0)$ satisfies both conditions.

To satisfy conditions that minimize phase velocity errors at both $(k_x,k_y)=(\pi,\pi)$ and $(\pi,0)$ in the present study, we introduce additional degrees of freedom into FDTD(2,6) by adding operators of second- and/or fourth -degrees order along with third-degree considering Laplacian. Although numerical results have not yet been obtained, dispersion relation analysis suggests that the present method would may lead to improvements in both the relaxation of the CFL condition numerical stability and reduction of in phase velocity errors of current high-order FDTD schemes.

有限差分時間領域(Finite-Difference Time-Domain, FDTD)法は、電磁波の数値シミュレーションにおいて広く用いられている手法である。高次の FDTD 手法では、Courant – Friedrichs – Lewy(CFL)条件が厳格になるとともに、電荷保存則に関わる数値誤差が発生する可能性がある。計算コストを抑えながら、より高精度かつ効率的なプラズマシミュレーションを実現するには、高次 FDTD 法において CFL 条件を緩和することが重要である。

本研究では、高次 FDTD 法における CFL 条件の緩和と、これに伴う数値誤差、特に位相速度誤差の低減を目的とする。先行研究においては、ラプラシアンを考慮した 3 階差分演算子の導入により、FDTD(2,4) における CFL 条件の緩和と異方的な位相速度誤差の抑制が有効であることが示されている (Sekido+ 2024)。

本研究では、さらなる位相速度誤差の低減と数値振動の抑制を目指し、同様のアプローチを FDTD(2,6) に適用した。3 階差分演算子を導入した FDTD(2,6) では CFL 条件の緩和は確認されたが、期待された位相速度誤差の低減は得られなかった。分散関係解析の結果、FDTD(2,6) は波数空間における $(k_x,k_y)=(\pi,\pi)$ および $(\pi,0)$ の両点において、位相速度誤差を同時に最小化することが困難であることが明らかとなった。一方、3 階差分演算子を導入した FDTD(2,4) では、両条件を自然に満たすことが可能であった。

そこで本研究では、3 階差分演算子を導入した FDTD(2,6) に 2 階および 4 階の演算子を追加することで自由度を拡張し、 (k_x,k_y) = (π,π) および $(\pi,0)$ の両点における位相速度誤差の同時最小化を図る。現時点では数値計算による検証は行っていないが、分散関係解析により、本手法が現行の高次 FDTD 法における CFL 条件の緩和および位相速度誤差の低減に寄与する可能性が示唆されている。