R009-08

A 会場 : 11/24 PM1(13:45-15:45)

15:30~15:45:00

Comet Interceptor 搭載 TOF 型イオン分析器における分子イオン識別手法の開発と模擬データによる適用評価

#田尾 涼 ¹⁾, 笠原 慧 ¹⁾ ⁽¹ 東京大学

Development of a Molecular Ion Identification Method for a TOF Ion Mass Spectrometer on Comet Interceptor Using Simulated Data

#Ryo TAO¹⁾, Satoshi KASAHARA¹⁾
(1The University of Tokyo

Understanding the formation and evolution of the Solar System relies critically on comet observations. In particular, long-period comets are thought to originate from the Oort cloud at the outer edge of the Solar System and approach the Sun only rarely, making them primordial bodies that have undergone minimal physical and chemical alteration. Directly investigating the chemical composition of the gases and dust they contain provides essential insights into the properties of Solar System progenitor materials.

Comet Interceptor is a comet exploration mission jointly developed by ESA and JAXA. After launch, it will wait near the Sun – Earth L2 point and, upon selecting a target long-period comet, will perform a high-speed flyby to observe the comet's tenuous atmosphere, or coma. The onboard ion mass spectrometer CIMS measures the composition and dynamics of ions in the cometary coma.

The mass resolution of CIMS is approximately m/ Δ m \approx 45 for the LEF (Linear Electric Field) path and m/ Δ m \approx 5 for the ST (Straight Through) path, as verified by ion irradiation experiments. This resolution was incorporated into the simulated spectra as peak widths and used as a precondition for inverse analysis. In CIMS, ions pass through a carbon foil after electrostatic energy analysis, which provides the start signal for time-of-flight measurement and induces phenomena such as molecular ion dissociation into atomic ions and charge exchange at a certain probability. The post-foil charge state determines detection via the LEF or ST paths, with LEF generally measuring dissociated atomic ions and ST measuring intact molecular ions. Therefore, measurements in the high-resolution LEF path face the challenge that molecular ions are observed only in their dissociated states.

In this study, we developed an analysis method to identify multiple ion species from CIMS mass spectra, considering this detection mechanism and observational conditions. Simulated spectra were constructed using Gaussian functions reflecting the CIMS resolution, with predefined abundance ratios for known ion species. Observations near a comet (maximum ion density ~100 cm⁻³) were simulated with Poisson statistical fluctuations. Considering an observation time of 110 s, energy sweep (1/32), incidence angle sweep (1/8), carbon foil transmission (0.8), fraction of observable ions after passage (0.1), charge exchange to cations (0.01), and MCP transmission (0.6), the expected counts were approximately 210 for the LEF path and 6000 for the ST path.

Analysis was performed using both standard least squares and non-negative constrained least squares, under three data configurations: (1) LEF only, (2) ST only, and (3) LEF and ST combined with counts normalized by inverse-square weighting. Thus, each analysis generated six optimization results (2 methods \times 3 data configurations). As LEF provides atomic ion information and ST provides molecular ion information, combining both enhances estimation accuracy from both molecular structure and atomic composition.

Optimization was conducted iteratively. For numerous random ion density patterns, the six analyses were applied, and the combination of path and method minimizing the sum of squared differences between reconstructed and true values was selected. Ion species with high reproducibility were then fixed in abundance for the next optimization step. However, for molecular ions with overlapping m/q values in the ST path (e.g., H_2O^+ vs. NH_4^+ , OH^+ vs. NH_3^+ , CO^+ vs. $HCNH^+$), ST results were not directly used before their abundances were fixed. This procedure was repeated until the abundances of all ion species were determined, suppressing misidentification while leveraging complementary information from LEF and ST, thereby improving overall identification accuracy.

These results demonstrate that multiple overlapping ion species can be identified with high accuracy even under low resolution and low count conditions, and that the complementary use of LEF and ST is effective. Future work will experimentally evaluate ion-species-dependent dissociation efficiency and charge exchange probability at the carbon foil and refine the analysis method to incorporate noise characteristics, aiming for further improvements in accuracy.

太陽系の形成と進化を理解するうえで、彗星観測は極めて重要である。特に長周期彗星は太陽系外縁のオールトの雲を起源とし、太陽に接近する機会が限られるため、物理・化学的改変を受けにくい始原的天体と考えられている。これらに含まれるガスやダストの化学組成を直接調べることは、太陽系起源物質の特性解明に直結する。

Comet Interceptor は、ESA と JAXA が共同開発を進める彗星探査ミッションであり、打ち上げ後に太陽-地球系 L2 点付近で待機し、観測対象となる長周期彗星を決定後に接近して、高速フライバイにより彗星コマと呼ばれる希薄大気を観

測する。搭載されるイオン質量分析器 CIMS は、彗星コマ中のイオン組成や運動を計測する。

CIMS の質量分解能は LEF(Linear Electric Field)経路で m/Δ $m \approx 45$ 、ST(Straight Through)経路で m/Δ $m \approx 5$ であり、イオン照射実験によって検証済みである。この分解能は模擬スペクトル生成時のピーク幅として設定し、逆解析の前提条件とした。CIMS では、イオンは静電エネルギー分析後にカーボンフォイルを通過し、飛行時間計測のスタート信号を得るとともに、分子イオンが原子イオンへ分離する現象や一定確率での電荷交換が生じる。通過後の電荷状態により LEF 経路または ST 経路で検出され、一般に LEF では分離後の原子イオン、ST では分離前の分子イオンが観測される。したがって、高分解能の LEF 経路での計測は、分子イオンが分離後の状態で得られるという課題がある。

本研究では、この検出機構と観測条件を踏まえ、CIMS の質量スペクトルから複数イオン種を識別する解析手法を開発した。模擬スペクトルは既知の複数イオン種の存在比を設定し、CIMS の分解能を反映したガウス関数で構成した。彗星近傍(最大イオン数密度 100 個/cm³ 程度)での観測を想定し、ポアソン統計に基づく揺らぎを導入した。さらに観測時間 110 秒に加え、エネルギー掃引(1/32)、入射角度掃引(1/8)、カーボンフォイル通過率(0.8)、通過後の観測可能割合(0.1)、陽イオンへの電荷交換率(0.01)、MCP 通過率(0.6)を考慮した結果、LEF 経路で約 210 カウント、ST 経路で約6000 カウントと見積もられた。

解析は、通常の最小二乗法および非負制約付き最小二乗法の双方を用い、(1) LEF 経路のみ、(2) ST 経路のみ、(3) LEF・ST 経路をカウント値の逆二乗で正規化して同時利用、の3通りのデータ構成で実行した。したがって、1回の解析で2種類の手法×3通りの構成=計6通りの最適化結果が得られる。LEF は原子イオン、ST は分子イオンの情報を与えるため、両者を組み合わせることで分子構造と原子構成の双方から推定精度を高められる利点がある。

最適化は反復的に行い、多数のランダムなイオン数密度パターンに対して 6 通りの解析を適用し、復元値と設定値の差の二乗和が最小となる経路・手法の組み合わせを特定する。その結果から再現性の高いイオン種を選び、その存在量を次の解析ステップで前提条件として固定する。ただし、ST 経路で m/q が一致する異なる分子イオン(例: H_2O^+ と NH_4^+ 、 OH^+ と NH_3^+ 、 CO^+ と $HCNH^+$)については、存在量が固定される前の段階では ST 経路の結果を直接用いない。この手順を、すべてのイオン種の存在量が決定するまで繰り返すことで、誤同定の可能性を抑えつつ、LEF と ST を相補的に活用する解析を行い、全体の識別精度を向上させた。

以上により、低分解能・低カウント条件下でも複数の重なり合うイオン種を高精度に識別でき、LEFとSTの相補的利用が有効であることを示した。今後は、カーボンフォイル通過時の分離効率や電荷交換確率のイオン種依存性を実験的に評価し、ノイズ特性を含めた解析手法の改良により、さらなる精度向上を目指す。