R009-13

A 会場 : 11/24 PM2(16:05-18:05)

17:05~17:20:00

LAPYUTA 搭載に向けた紫外線高反射ミラーの開発

#榎木谷 海 $^{1)}$, 村上 豪 $^{1)}$, 山崎 敦 $^{1)}$, 田所 彩華 $^{1,2)}$, 亀田 真吾 $^{3)}$, 鍵谷 将人 $^{4)}$, 土屋 史紀 $^{4)}$ $^{(1)}$ JAXA, $^{(2)}$ 東京理科大学, $^{(3)}$ 立教大学, $^{(4)}$ 東北大学

Development of High-Reflectivity Ultraviolet Mirrors for LAPYUTA

#Umi ENOKIDANI¹), Go MURAKAMI¹), Atsushi YAMAZAKI¹), Ayaka TADOKORO¹,²), Shingo KAMEDA³), Masato KAGITANI⁴), Fuminori TSUCHIYA⁴)

⁽¹Japan Aerospace Exploration Agency, ⁽²Tokyo University of Science, ⁽³Rikkyo University, ⁽⁴Tohoku University

We are developing high-reflectivity ultraviolet mirrors to improve the detection efficiency of the focal plane instruments aboard the Life-environmentology, Astronomy, and PlanetarY Ultraviolet Telescope Assembly (LAPYUTA). Conventionally, ultraviolet mirrors are fabricated by vacuum-depositing aluminum (Al), which has high reflectivity in the UV range, onto polished glass substrates, followed by a magnesium fluoride (MgF₂) coating to prevent oxidation of the Al layer. In general, mirror reflectivity in the vacuum ultraviolet region is lower than in the visible and infrared. For one of LAPYUTA's primary science targets, the atomic oxygen emission line at 130.4 nm, the reflectivity of Al + MgF₂ mirrors is typically limited to about 85%. With four reflections in the optical path, the total efficiency would be reduced by half. Reducing the number of mirrors is an effective way to reduce this loss, but LAPYUTA requires three to five mirrors to achieve high imaging performance. Therefore, improving the reflectivity of each mirror is essential. In this study, we are fabricating mirrors while systematically varying deposition parameters—including the film thicknesses of Al and MgF₂, the substrate temperature during deposition, and the vacuum pressure—to determine the optimal conditions for maximizing reflectivity. Our current best process has achieved a reflectivity of 87.6%.

We have also begun investigating a new coating process. A recent study (Quijada et al., 2024) reported that introducing a small amount of xenon fluoride (XeF_2) between the Al and MgF_2 deposition steps allows Al to fluorinate before it oxidizes, thereby preventing a decline in reflectivity. Mirrors fabricated with this process have demonstrated reflectivity exceeding 90%. The reflectivity in this process also depends on multiple deposition parameters. Therefore, we aim to identify the optimal conditions and approach the theoretical maximum reflectivity of 95%. When this is realized, the overall efficiency with four reflective surfaces would improve to 81%. This presentation will also report on the preparation status of this coating process.

我々は、高精度紫外線宇宙望遠鏡 Life-environmentology, Astronomy, and PlanetarY Ultraviolet Telescope Assembly (LAPYUTA) の焦点面装置の検出効率向上に向けて、紫外線用の高反射ミラーの開発を行っている。従来の紫外線用ミラーは、研磨したガラス基板上に紫外線領域において反射率が高いアルミニウム (Al) を真空蒸着し、その上に Al の酸化防止コーティングとしてフッ化マグネシウム (MgF2) を真空蒸着して作成する。一般に、真空紫外域でのミラーの反射率は可視・赤外域に比べて低く、LAPYUTA の観測ターゲットの1つである酸素原子輝線 130.4 nm における、Al + MgF2ミラーの反射率は通常 85% 程度に留まる。反射が4回あると全体の効率が半分になるため、望遠鏡の効率低下を回避するにはミラーを減らすことが有効だが、LAPYUTA では高い結像性能を得るために 3-5 枚のミラーを使用する。このため、反射率の自体の向上が必須である。そこで、本研究では様々な蒸着パラメータ(Al・MgF2の膜厚、蒸着時の基板温度、蒸着時の真空度など)を制御してミラーを作成し、高い反射率を実現する最適な蒸着パラメータの決定に取り組んでいる。プロセスを改善した現状の最適蒸着パラメータでは、反射率 87.6% に達している。

また、新しいコーティングプロセスにも着手している。近年、Al と MgF2 の 2 回の蒸着の間に微量のフッ化キセノンを封入することで、Al が酸化するより先にフッ化させ、反射率の低下を防ぐことができると報告された (Quijada et al., 2024)。このプロセスで作成したミラーの反射率は 90 % 以上である。このプロセスにも上述のように、様々なパラメータ依存性がある。そこで、我々はこのプロセスにおける最適蒸着パラメータを決定し、理論値の 95 % に近づく反射率を目指している。これが達成できれば、反射面が 4 枚の場合の効率は 81% まで改善する。本発表では、このプロセスの準備状況も報告する。