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1. Background and Objectives

The abundances and internal distributions of icy materials (hydrogen compounds of oxygen, nitrogen, carbon, sulfur, etc.)
in giant planets such as Jupiter provide key information for understanding the formation of gas giants and the evolution of
planetary systems. In the atmospheres of giant planets, these icy species condense to form clouds. When their abundance
exceeds a certain threshold, convection is inhibited because their molecular weight is larger than that of major components
(Guillot, 1995; Leconte et al, 2017). In such cases, convective energy transport is inhibited in the condensation layers, and
observational estimation of composition and temperature structures may become more difficult. However, previous studies
have mainly employed 1D vertical models, which cannot fully represent convective dynamics. Furthermore, the effects of
material transport due to the precipitation of condensates in cloud convection and the associated latent energy transport have
not been considered. On the other hand, employing a 2D cloud convection model for Jupiter that includes multiple condens-
able species and cloud microphysical processes, Sugiyama et al (2014) performed long-term integrations to investigate the
spatiotemporal evolution of convection and the mean atmospheric structure. However, they didn’t explore conditions where
the abundance of condensable species exceed the threshold values for convective inhibition. In this study, we employ their
2D cloud convection model, deepconv, to investigate dynamical and energy transport structures under convection-inhibited
conditions focusing on the role of precipitation processes.

2. Numerical Model

The 2D cloud convection model deepconv solves a set of equations based on Klemp and Wilhelmson (1978), coupled with
conservation equations for condensable species. Cloud microphysical processes are represented by the warm-rain parameteri-
zation of Kessler (1969), and turbulent mixing is parameterized following Klemp and Wilhelmson (1978). The computational
domain extends 512 km horizontally and 300 km vertically, with 2 km grid spacing. The bottom boundary is placed at pres-
sure of 30 bar. A radiative cooling of — 0.1 K/day, which is approximately one order of magnitude stronger than that for
Jupiter’s atmosphere, is imposed over the pressure range from 2 bar to 0.1 bar. The initial vertical temperature profile is adi-
abatic below 0.1 bar and isothermal above. For simplicity, we only consider water vapor as the condensable species, which
contributes most strongly to convection inhibition.

3. Preliminary Results

Simulations were performed with water vapor mixing ratios of 1 X, 10 X, and 40 X the solar composition (Grevesse et
al, 2007), each integrated for 1000 days. Fig.1 shows snapshots of vertical velocity, potential temperature deviation from
the initial state, cloud mixing ratio, and rain mixing ratio at an active convective phase in the 40 X abundance case. The
atmosphere is separated into moist and dry convective layers above and below the condensation level. The regions around
the condensation level become up to “20 K colder than the initial state. This cooling results from evaporation of raindrops
descending from the upper cloud layers, while upward convective heat transport is inhibited.

4. Future Work

The preliminary results suggest that cloud microphysical processes, neglected in conventional 1D models, can significantly
affect atmospheric dynamics and energy transport. We will perform longer integrations to reach statistically steady state. To
accelerate the approach to the statistically steady states, we plan to further enhance radiative cooling. Based on such extended
experiments, we aim to quantitatively evaluate the contribution of material and energy transport associated with cloud micro-
physics to the atmospheric structure. Ultimately, we intend to clarify atmospheric dynamics, energy transport, and material
cycles also under more realistic thermal forcing conditions.
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Fig. 1. Snapshots during an active convective phase in the 40 X solar experiment: (a) vertical
velocity, (b) potential temperature deviation from the initial state, (¢) cloud mixing ratio, and
(d) rain mixing ratio.



