R009-27

A 会場 : 11/25 AM2(11:05-12:35)

12:05~12:20:00

探査機 Mars Express と MAVEN の観測に基づく火星夜側電離圏の全球的な傾向と 上流太陽風・IMF 及び地殻磁場依存性

#竹内 直之 $^{1)}$, 原田 裕己 $^{1)}$, Sánchez-Cano Beatriz $^{2)}$ $^{(1)}$ 京大 理, $^{(2)}$ レスター大学

Global trends of the martian nightside ionosphere and the effects of upstream drivers and crustal fields based on MEX and MAVEN

#Naoyuki Takeuchi¹⁾, Yuki HARADA¹⁾, Beatriz Sánchez-Cano²⁾
⁽¹Graduate School of Science, Kyoto University, ⁽²University of Leicester

Understanding the behavior of the Martian plasma is essential for understanding magnetospheric dynamics and ion escape processes. In particular, ion escape through the magnetotail is thought to be one of the main channels, but observations of the nightside ionosphere remain limited, and its formation processes and variability are still poorly understood.

In this study, we derived a huge database of the Martian nightside ionosphere using observations from Mars Express (MEX) and MAVEN spanning from October 2014 to November 2022. This enabled not only a global statistical investigation but also detailed analyses of localized regions such as mini-magnetospheres. Furthermore, we performed a comprehensive survey that combined upstream solar wind and interplanetary magnetic field (IMF) conditions with crustal magnetic field configurations, which had not been sufficiently examined in previous studies.

Our results show that in regions of weak crustal fields, with few exceptions, the maximum electron density tends to be low while the detection rate is high, and the solar wind dynamic pressure and the orientation of the solar wind electric field are the primary controlling factors. In contrast, in regions of strong crustal fields, the maximum electron density is generally high while the detection rate is low, and the relative orientation between the crustal field and the draped IMF plays a key role. These tendencies are consistent with the recently highlighted characteristics of Martian "electron aurora," supporting the idea that electron precipitation is a primary production mechanism of the nightside ionosphere. Further constraints on its formation processes are expected through analysis of ionospheric ion data from MAVEN.

火星プラズマの挙動を理解することは、磁気圏ダイナミクスやイオン散逸過程の解明に不可欠である。特に、磁気圏尾部からのイオン散逸は大きな割合を占めると考えられているが、その供給源となりうる夜側電離圏の観測例は限られており、生成過程や変動性の理解は十分に進んでいない。

本研究では、Mars Express(MEX)および MAVEN による 2014 年 10 月から 2022 年 11 月までの観測データを用い、夜側電離圏の大規模データベースを構築した。これにより、全球的な統計解析に加え、ミニ磁気圏など局所領域における詳細な調査も可能となった。また、これまで十分に検討されてこなかった上流太陽風・IMF 条件と地殻磁場条件を組み合わせた解析を実施した。

その結果、地殻磁場の弱い領域では、例外を除き、最大電子密度が低く検出率が高い傾向が確認され、太陽風動圧や太陽風電場の方向が主要因であることが示唆された。一方、地殻磁場の強い領域では、最大電子密度が高く検出率が低い傾向が見られ、地殻磁場とドレイプした IMF の相対的な方向が重要な役割を果たすことが分かった。これらの傾向は近年注目される火星「電子オーロラ」の特徴と整合的であり、いずれも電子降り込みが夜側電離圏の主要な生成機構であることを支持する。今後、MAVEN による電離圏イオン観測データを解析することで、生成機構に対する更なる制約が期待される。