R009-35

A 会場 : 11/25 PM1(13:45-15:45)

15:15~15:30:00

金星極域大気雲層における温度と対流圏界面高度の数日周期変動をもたらす波

#杉浦 美優 $^{1)}$, 今村 剛 $^{1)}$, 安藤 紘基 $^{2)}$, 樫村 博基 $^{3)}$ (1 東京大学大学院, $^{(2}$ 京都産業大学, $^{(3)}$ 神戸大学

Waves driving the temperature and tropopause height variations with time scales of several days in the Venusian polar cloud layer

#Miyu SUGIURA¹⁾, Takeshi IMAMURA¹⁾, Hiroki ANDO²⁾, Hiroki KASHIMURA³⁾
⁽¹Graduate School of Frontier Science, The University of Tokyo, ⁽²Kyoto Sangyo University, ⁽³Kobe University)

In the Venusian atmosphere at altitudes of 50-70 km, a cloud layer composed mainly of H₂SO₄ exists. Around the cloud base, infrared absorption from the lower atmosphere drives convection in the lower and middle clouds (at altitudes of about 50 – 55 km), forming the troposphere. Based on the analysis of temperature data from radio occultation observations by the Venus Express spacecraft, Ando et al. (2017) found temperature variations on timescales of several Earth days in the polar region and proposed that these are caused by planetary-scale waves. By further analyzing a larger set of radio occultation data, we have shown that the tropopause height also varies on a similar timescale, and that there is a strong positive correlation between the temperature below the tropopause and the tropopause height. These may be explained by meridional advection of the background atmospheric structure associated with planetary-scale waves (presented at SGEPSS 2024 Fall Meeting). However, meridional wind data cannot be directly obtained from radio occultation observations, so this mechanism remains a hypothesis. In this study, we investigate meridional advection of the temperature field associated with waves using numerical solutions of the global non-hydrostatic Venus atmospheric model SCALE-GM. The model results suggest the presence of a prominent wavenumber-2 structure in both the temperature and meridional wind fields at mid-to-high latitudes below the tropopause, which may give rise to north-south oscillations of temperature. In future work, we plan to conduct a more detailed analysis of the model to identify the waves responsible for the wavenumber-2 structure and to examine whether meridional advection can quantitatively explain the observed temperature and tropopause height variations.

金星大気の高度 50~70 km には、硫酸を主成分とする雲層が存在する。雲底付近では、下層大気からの赤外線放射が吸収されることにより、下層・中層雲 (高度約 50~55 km) で対流が駆動され、対流圏が形成される。Ando et al. (2017) は金星探査機 Venus Express の電波掩蔽観測による温度データの解析から、極域において数日 (地球日) の時間スケールの温度変動を見出し、その原因は惑星規模波動であると提唱した。我々はさらに、より多くの電波掩蔽データを用いた解析により、対流圏界面の高度も同様の時間スケールで変動していること、対流圏界面より下の温度と対流圏界面高度との間に強い正の相関があることを明らかにし、これらは惑星規模波動に伴う背景大気構造の南北移流によって説明できる可能性を示した(SGEPSS2024 年秋季大会)。しかし、電波掩蔽観測では南北風データを直接得ることができず、上のメカニズムはあくまで推定にとどまる。そこで本研究では、金星大気の全球非静力学モデル「金星 SCALE-GM」の数値解を用いて、波動に伴う温度場の南北移流を検証する。金星 SCALE-GM の数値解では対流圏以下の温度と南北風の分布に中高緯度において顕著な波数 2 の構造が存在しており、これによって温度の南北振動が生じている可能性が見出された。今後は、数値解を詳細に解析し、波数 2 の構造をもたらす波動を同定するとともに、南北風による温度移流が温度変動や対流圏界面高度の変動を定量的に説明するかどうかを検討する。