Comet Interceptor/Hydrogen Imager による長周期彗星観測に向けた彗星コマの高 分解能紫外線スペクトルデータの解析

#御任 勇成 $^{1)}$, 吉岡 和夫 $^{2)}$, 鈴木 雄大 $^{3)}$, 青木 翔平 $^{2)}$ $^{(1)}$ 東京大学理学系研究科, $^{(2)}$ 東京大学新領域創成科学研究科, $^{(3)}$ 宇宙航空研究開発機構

Analysis of high-resolution ultraviolet spectral data of comet comas for observation of Comet Interceptor/Hydrogen Imager

#Yusei MITOH¹⁾, Kazuo YOSHIOKA²⁾, Yudai SUZUKI³⁾, Shohei AOKI²⁾

⁽¹The University of Tokyo, Graduate School of Science, ⁽²The University of Tokyo, Graduate School of Frontier Science, ⁽³ISAS/JAXA

Hydrogen Imager: HI is an ultraviolet imaging device that will be installed on the Comet Interceptor long-period comet exploration mission. There are examples of long-period comet observations using similar wavelength bands, such as SOHO/SWAN and HST/STIS. In this study, we analyzed high-resolution ultraviolet spectral data from HST/STIS to understand the brightness distribution of the hydrogen coma of comets prior to HI observations.

Comets are highly active celestial bodies with high gas and dust emission rates. As they approach the Sun, volatile substances are released from the comet nucleus, forming structures such as comas and tails. By observing their composition and spatial distribution, it is possible to clarify the composition of the comet nucleus, spatiotemporal variations in activity and interactions with the solar wind. Long-period comets often have periods of more than 10,000 years, so they have been less affected by the Sun than short-period comets and are thought to retain the pristine features of solar system environment at the time of comet formation and to be highly active.

However, in-situ observations of long-period comets have never been conducted and are limited to short-period comets. This is because long-period comets have very long orbital periods, so when they approach Earth and are newly discovered, they are new comets whose orbits are unknown. In addition, the period from discovery to Earth flyby is generally only a few years, making it extremely difficult to develop instruments based on assumptions about the orbit and environment of a specific comet using conventional methods.

Therefore, in the Comet Interceptor mission led by European Space Agency (ESA), equipment is being developed based on the typical environment of long-period comets known from remote observations, and in-situ observations will be realized by parking in the vicinity of Earth after launch for comets suitable for observation.

One of the two sub-probes, Probe B1, will carry "Hydrogen Imager: HI", which will capture images of the Lyman-alpha (121.6 nm) of the comet's hydrogen coma to understand the spatial structure of hydrogen, derive the water release rate based on the assumption that hydrogen atoms are generated by the photodissociation of water molecules, and measure the ratio of hydrogen to deuterium (D/H ratio) using a glass cell filter, which has a slightly different emission wavelength.

HI primarily has two observation modes: one is to capture two-dimensional images of the Ly- α emission from hydrogen atoms, and the other is to measure the hydrogen-deuterium ratio based on brightness ratios. The influence of the "multiple scattering region" is of particular interest when analyzing these data.

Multiple scattering occurs in regions near the nucleus where the hydrogen column density is high, making the optical thickness greater, which disrupts the normal proportional relationship between column density and brightness (Suzuki et al. 2025). As a result, in HI, this leads to an underestimation of the hydrogen atom abundance near the nucleus and an overestimation of the D/H ratio due to differences in the optical thickness of the coma for hydrogen Ly- α and deuterium Ly- α .

Suzuki et al. (2025) used observational data from "Hisaki" satellite for C/2013 US10 (Catalina) and others, and there are a few other examples of long-period comets being spectroscopically observed in the far-ultraviolet region, like Hisaki. Among these, the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) is equipped with an Echelle-type spectrograph with extremely high wavelength resolution (R ~30,000 – 114,000), such as E140H, enabling the separation of hydrogen Ly- α (121.567 nm) and deuterium Ly- α (121.534 nm). Weaver et al. (2008) analyzed observational data of C/2001 Q4 (NEAT) obtained with STIS/E140H and presented the spectral shape, deriving a D/H ratio of ~3.2 \times 10⁻⁴ – 6.0 \times 10⁻⁴; however, the derivation method is unclear.

Since this is one of the few examples where the D/H ratio of a long-period comet can be calculated from the atomic abundance ratio, this study analyzed the same data. Considering the effect of multiple scattering on the apparent D/H ratio, the D/H ratio of C/2001 Q4 was derived and compared with previous analysis results. Additionally, by examining the effect of multiple scattering from the analysis results, this study also suggests the feasibility of observations using Comet Interceptor/HI.

In addition, the same observation data also shows an emission line originating from oxygen atoms (130.4 nm). The intensity of this emission line makes it possible to examine the state of water molecules not only from hydrogen atoms but also from oxygen atoms. Furthermore, since HI is designed to exclude light other than Ly- α using a bandpass filter, it is

important to consider the influence of oxygen emission lines, and the results also contribute to the performance evaluation of HI

Hydrogen Imager: HI は長周期彗星探査ミッション Comet Interceptor に搭載される紫外線撮像装置である。同様の波長帯による長周期彗星観測は SOHO/SWAN や HST/STIS などの例がある。本研究では HI の観測に先立ち彗星の水素コマの輝度分布を把握するべく、HST/STIS の高分解能紫外線スペクトルデータを解析した。

彗星は高いガス放出率やダスト放出率を持った活動性の高い天体で、太陽に近づいて揮発性物質が彗星核から放出されることでコマやテイルなどの構造を形成する。これらの組成や空間分布を観測すれば、彗星核の組成や活動の時空間的な変動・太陽風との相互作用などを明らかにすることができる。特に、長周期彗星は1万年以上の周期をもつものが多いため、短周期彗星に比して太陽による変質を受けた回数が少なく、彗星形成時の始原的な太陽系環境を保持しており、活動度も高いと考えられている。

しかし、長周期彗星のその場観測は行われたことはなく、短周期彗星に限られている。というのも、長周期彗星は周期が非常に長いため、地球に近づいてきて新たに発見されるのは軌道の分からない新規の彗星であり、一般的に発見から地球近傍通過までの期間も数年と短いので、特定の天体の軌道や環境を想定して装置開発を行う従来の方法では実現が極めて困難であった。

そこで欧州宇宙機関(ESA)が主導する Comet Interceptor では、リモート観測などからわかっている典型的な長周期彗星の環境を参考に装置を開発し、打ち上げ後は地球周辺で観測に適した彗星を待ち受けることでその場観測を実現する。

探査機の 2 つの子機の一方、Probe B1 に搭載される「Hydrogen Imager: HI」は彗星の水素コマの Lyman- α (121.6 nm) 撮像から水素の空間構造を把握し、水素原子が水分子の光解離によって生成するという仮定により水の放出率を導出したり、ガラスセルフィルターを用いて発光波長がわずかに異なる水素と重水素の存在比(D/H 比)を測定したりする。

HI は主に 2つの観測モードがあり、 1 つは水素原子が発する Ly- α の 2次元画像を撮影し、もう一方は輝度比から望遠鏡視野内の水素・重水素比を計測する。これらのデータを解析する上で「多重散乱領域」の影響が注目される。

多重散乱は核近傍の水素柱密度が高い領域で光学的に厚いために生じ、柱密度と輝度が比例する本来の関係が崩れてしまう (Suzuki et al. 2025)。そのため HI では、核近傍の水素原子存在量の過小評価や、水素 Ly- α と重水素 Ly- α それぞれにとってコマの光学的厚みに差があるために D/H 比の過大評価につながる。

Suzuki et al. (2025) では「ひさき」による C/2013 US10 (Catalina) 等の観測データを用いているが、ひさきと同様に遠紫外領域で長周期彗星を分光観測した例は他にも少数存在する。中でもハッブル宇宙望遠鏡(Hubble Space Telescope: HST)の Space Telescope Imaging Spectrograph: STIS は波長分解能が非常に高い(R ~30,000-114,000) Echelle 型分光器を搭載しており、水素 Ly- α (121.567 nm)と重水素 Ly- α (121.534 nm)を分別可能である。Weaver et al. (2008) はSTIS/E140H による C/2001 Q4 (NEAT) の観測データを解析している。スペクトル形状が示されており、D/H ~3.2 x 10^{-4} - 6.0 x 10^{-4} が導かれているが、その導出方法は不明確である。

長周期彗星の D/H 比を原子の存在比から計算できる数少ない例のため、本研究では同データを解析した。そこで多重散乱による見かけの D/H 比への影響を考慮した上で C/2001 Q4 の D/H 比を導出・過去の解析結果と比較し、逆に解析の結果から多重散乱の影響を考察することで Comet Interceptor/HI による観測の実現可能性についても示唆を与える。

加えて、同観測データには酸素原子由来の発光輝線(130.4 nm)も見られている。この輝線強度により水素原子だけでなく酸素原子からも水分子の様子を考察することが可能である。また、HI はバンドパスフィルターを用いて Ly- α 以外の光を排するよう設計されているため酸素輝線の影響を考慮することは非常に重要であり、HI の性能評価につながる結果も示す。