ポスター3:11/26 PM2/PM3 (14:50-18:25)

北半球の夏の火星 H2O2 に関する IRTF/TEXES による新たな観測:初期解析結果

#井口 瑞都 ¹⁾, 青木 翔平 ¹⁾, 佐川 英夫 ²⁾, 岩中 達郎 ³⁾, Daerden Frank ⁴⁾, Greathouse Thomas ⁵⁾, Therese Encrenaz ⁶⁾ (1 東京大学, ⁽²⁾ 京都産業大学, ⁽³⁾ 理化学研究所, ⁽⁴⁾ ベルギー王立宇宙航空研究所, ⁽⁵⁾ Southwest Research Institute, ⁽⁶⁾ Paris observatory

New IRTF/TEXES Measurements of Martian H2O2 During Northern Summer: Preliminary Results

#Mizuto Iguchi¹⁾, Shohei AOKI¹⁾, Hideo SAGAWA²⁾, Tatsuro IWANAKA³⁾, Frank Daerden⁴⁾, Thomas Greathouse⁵⁾, Encrenaz Therese⁶⁾

⁽¹University of Tokyo, ⁽²Kyoto Sangyo University, ⁽³RIKEN, ⁽⁴Royal Belgian Institute for Space Aeronomy, ⁽⁵Southwest Research Institute, ⁽⁶Paris observatory

Mars' atmosphere is composed of approximately 96% CO2. Despite decades of space research, the stability of this atmosphere remains poorly understood. Ultraviolet light splits CO2, into CO and O. However, the reverse reaction that recombines CO and O into CO2 is very slow due to being spin-forbidden. This suggests that CO2 should be unstable, and the Composition of the Martian atmosphere should have large components of CO and O2 (greater than 10%). However, the observed fractions of CO and O2 are only around 0.1%. This discrepancy is commonly referred to as the "stability problem". Theoretical studies propose that photolysis products of atmospheric water, known as "odd hydrogen" or "HOx species" (H, OH, HO2), could participate in a catalytic cycle that regenerates CO2 from CO. Two main pathways have been suggested: one involving HO2 [1], and another involving H2O2 [2]. In both cases, OH reacts with CO, regenerating CO2 and H, which helps stabilize the overall CO2 composition. However, this hypothesis remains unconfirmed since the key reactive species, OH and HO2, have never been directly observed on Mars. Additionally, theoretical models have been unable to replicate the observed long-term equilibrium mixing ratios of CO and O2 in the Martian atmosphere. The volume mixing ratios (VMRs) of catalytic HOx species are predicted to be extremely low, around 10 ppt for OH and 1 ppb for HO2, which places them beyond the detection capabilities of previous telescopes and space-borne instruments. Hydrogen peroxide (H2O2) is the only HOxrelated species that has been observed, as its VMR ranges from 0 to 40 ppb. Although H2O2 does not directly participate in HOx catalytic cycles, it acts as a relatively stable reservoir species, being formed through the self-reaction of HO2 and later photolyzed back into OH. As such, H2O2 provides an indirect but valuable constraint on HOx abundances. H2O2 has distinct spectral signatures in the mid-infrared and submillimeter ranges. Unfortunately, no past, current, or planned space missions have specifically targeted H2O2 on Mars, making its detection critically reliant on ground-based observations. H2O2 was first detected at a submillimeter frequency (362 GHz) using the James Clerk Maxwell Telescope (JCMT) during the southern summer on Mars [3], where a very weak H2O2 absorption line (~0.2%) was observed over the Martian disk, with a retrieved VMR of 18 ± 4 ppb. A subsequent attempt to detect H2O2 in the submillimeter range during the northern summer using the space-borne Herschel telescope was unsuccessful, yielding an upper limit of 2 ppb [4].

Measurements were conducted using the Texas Echelon Cross Echelle Spectrograph (TEXES)mounted on the NASA Infrared Telescope Facility(IRTF) [5 – 9], spanning several Martians Years. Thanks to its high spectral resolution, TEXES was able to capture the weak signatures of H2O2, providing a reference dataset for H2O2 VMRs. The TEXES data suggests significant seasonal and interannual variation, patterns that are not yet explained by current Mars climate models [e.g., 10 – 11].

In this study, we performed new observations of H2O2 on Mars using TEXES at the IRTF on June 12 and 13, 2025, during the northern summer season.

To measure Martian H2O2 absorption, we used TEXES configured to cover 1237 – 1243 cm-1, enabling detection of two isolated H2O2 lines near 1241 cm-1.

Our objective is to analyze the TEXES spectra through detailed comparison with radiative transfer calculations. Previous analyses were based primarily on equivalent widths of H2O2 and CO2. The northern summer is of particular interest because past observations exist from the same season in earlier Mars years, allowing direct comparison. In addition, heterogeneous chemical reactions are expected to play an important role during this period [10]. Although, the weather conditions on June 12 were poor, successful observations were obtained on June 13. In this presentation, we will present preliminary results from our data analysis.

火星の大気は約96% がCO2 で構成されている。数十年にわたる研究にもかかわらず、この大気の安定性は未だ十分に解明されていない。紫外線はCO2をCOとOに分解する。しかし、COとOを再結合させてCO2にする逆反応は、スピン禁制のため非常に遅いことが知られている。これは、CO2が不安定であり、火星の大気にはCOとO2が10%以上含まれているはずであることを示唆している。しかし実際には、観測されているCOとO2の割合はわずか0.1%程度である。この矛盾は一般に「安定性問題」と呼ばれている。理論的研究では、大気中の水の光分解生成物である「HOx種」(H、OH、HO2)が、COからCO2を再生する触媒サイクルに関与している可能性が提唱されている。2つの主な経

路が提案されており、1 つは HO2 [1]、もう 1 つは H2O2 [2] が関与している。どちらの場合も、OH は CO と反応して CO2 と H を再生し、全体的な CO2 組成の安定化に貢献する。しかし、主要な反応性物質である OH と HO2 は火星で直接観測されたことがないため、この仮説は未だ検証されていない。さらに、理論モデルは火星大気中の CO と O2 の観測 された長期平衡混合比を再現できていない。

触媒 HOx の体積混合比(VMR)は、OH で約 10 ppt、HO2 で約 1ppb と極めて低いと予測されており、従来の望遠鏡や宇宙搭載機器の検出能力を超えている。過酸化水素(H2O2)は、VMR が $0\sim40$ ppb の範囲にあるため、観測されている唯一の HOx 関連物質である。 H2O2 は HOx の触媒サイクルに直接関与することはないが、HO2 の自己反応によって生成され、後に光分解されて OH に戻るため、比較的安定した貯蔵種として働く。そのため、H2O2 は HOx の存在量に関する間接的ではあるが貴重な制約条件を提供する。H2O2 は、中赤外線およびサブミリ波領域で明確なスペクトル特性を示す。残念ながら、過去、現在、そして計画中の宇宙探査において、火星上の H2O2 を特にターゲットとしたものはなく、その検出は地上観測に大きく依存している。

H2O2 は、火星の南半球の夏にジェームズ・クラーク・マクスウェル望遠鏡(JCMT)を用いてサブミリ波周波数(362GHz)で初めて検出された [3]。このとき、火星の円盤上に非常に弱い H2O2 吸収線(約 0.2%)が観測され、取得された VMR は 18 \pm 4ppb であった。その後、北半球の夏季に宇宙搭載のハーシェル望遠鏡を用いてサブミリ波帯の H2O2 を検出する試みが行われたが、上限値は 2ppb にとどまり、成功しなかった [4]。測定は、テキサス・エシェロン・クロス・エシェル分光器(TEXES)IRTF [5 - 9] を用いて、数火星年にわたって実施された。TEXES は高いスペクトル分解能を有していたため、H2O2 の微弱な特徴を捉えることができ、H2O2 VMR の参照データセットを提供している。TEXES データは、現在の火星気候モデルではまだ説明できない、顕著な季節変動および年々変動を示唆している [10 - 11]。

本研究では、2025 年 6 月 12 日と 13 日の北半球の夏季に、IRTF/TEXES 装置を用いて火星における H2O2 の新たな観測を実施した。本研究の目的は、放射伝達計算との詳細な比較を通して、TEXES スペクトルを解析することである。これまでの解析は、主に H2O2 と CO2 の等価幅に基づいていた。北半球の夏は、火星の初期の同時期の観測データが存在するため、直接比較することができる。さらに、この時期には異種化学反応が重要な役割を果たしていると予想されている [10]。6 月 12 日の天候は悪かったものの、6 月 13 日に観測に成功した。火星の H2O2 吸収を測定するために、1237~1243 cm-1 をカバーするように構成された TEXES を使用し、1241 cm-1 付近に 2 つの孤立した H2O2 線を検出した。本発表では、データ解析の初歩的な結果を紹介する。

Reference

- [1] McElroy & Donahue (1972), Stability of the Martian Atmosphere, Science, 177, 986-988.
- [2] Parkinson and Hunten (1972), Spectroscopy and Acronomy of O2 on Mars, J. Atm. Sci., 29, 1380-1390.
- [3] Clancy et al. (2004), A measurement of the 362 GHz absorption line of Mars atmospheric H2O2, Icarus, 168, 116-121.
- [4] Hartogh et al. (2010), Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2, Astron. & Astrophys., 521, id.L49
 - [5] Encrenaz et al. (2004), Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus, 170, 424-429.
- [6] Encrenaz et al. (2008), Simultaneous mapping of H2O and H2O2 on Mars from infrared high-resolution imaging spectroscopy. Icarus, 195, 547-556.
 - [7] Encrenaz et al. (2012), Hydrogen peroxide on Mars: Observations, interpretation and future plans. PSS, 68(1), 3 17.
- [8] Encrenaz et al. (2015), Seasonal variations of hydrogen peroxide and water vapor on Mars: Further indications of heterogeneous chemistry, A&A, 578, id.A127.
 - [9] Encrenaz et al. (2019), Ground-based infrared mapping of H2O2 on Mars near opposition. A&A, 627, id.A60.
 - [10] Lefevre et al. (2008), Heterogeneous chemistry in the atmosphere of Mars. Nature, 454(7207), 971 975.
- [11] Daerden et al. (2023), Heterogeneous Processes in the Atmosphere of Mars and Impact on H2O2 and O3 Abundances. JGR: Planets, 128, e2023JE008014.