ポスター3:11/26 PM2/PM3 (14:50-18:25)

MGS 電波掩蔽観測と MCS 気温気候値を用いた火星南半球極夜の CO2 過飽和に関する研究

#野口 克行 ¹⁾, Kleinboehl Armin²⁾, Piqueux Sylvain²⁾ ⁽¹ 奈女大、⁽² ジェット推進研究所

CO2 supersaturation in the Martian southern polar night using MGS radio occultation rederived with MCS temperature climatology

#Katsuyuki Noguchi¹⁾, Armin Kleinboehl²⁾, Sylvain Piqueux²⁾
⁽¹⁾Nara Women's University, ⁽²⁾Jet Propulsion Laboratory, California Institute of Technology

In the Martian polar night, the major atmospheric component, carbon dioxide (CO2), condenses to form a polar cap on the surface, thereby depleting the atmosphere. Radio occultation (RO) observations, which provide high-vertical-resolution and precise temperature profiles, are suitable for studying CO2 supersaturation in the polar night. However, changes in atmospheric composition associated with CO2 condensation introduce systematic errors. In addition, RO analysis requires an assumed temperature at the uppermost altitude, and previous studies fixed this value, thus introducing additional systematic errors in temperature retrievals.

In this study, we rederived temperature profiles from Mars Global Surveyor (MGS) RO data by accounting for CO2 depletion during the polar night and improving the temperature assumption at the uppermost altitude. The evaluation of CO2 depletion in the polar night was based on argon measurements obtained by the Gamma Ray Spectrometer (GRS) onboard Mars Odyssey [Noguchi et al., 2014]. The upper boundary temperature assumption was refined by constructing new climatological values based on temperature measurements from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter (MRO).

Analysis of CO2 supersaturation events in the southern polar night using the rederived temperatures revealed that CO2 supersaturation occurred much more frequently than indicated by the original dataset, suggesting that previous studies underestimated its occurrence. CO2 supersaturation frequently occurred south of 65° S and extended up to altitudes of about 15 km around the winter solstice. After the solstice, the vertical extent rapidly decreased, but supersaturation near the surface persisted at high latitudes. Furthermore, a cold near-surface layer remained, accompanied by a strong temperature inversion was present even after the equinox.

火星の極夜域では、大気主成分である二酸化炭素(CO2)が凝結して地表面に極冠を形成することで、大気から失われる。高い鉛直分解能で精度の高い気温高度分布を取得可能な電波掩蔽観測は、極夜域における CO2 過飽和の研究に適しているが、CO2 凝結に伴う大気組成の変化が系統的な誤差をもたらす。さらに、電波掩蔽観測では上端高度での気温を仮定して導出する必要があり、従来の解析ではこの値を固定していたため、この点も気温導出に系統的な誤差をもたらしていた。

本研究では、極夜における CO2 減少の考慮と上端高度での気温仮定の改善を行い、Mars Global Surveyor(MGS)RO による気温の高度分布を再導出した。極夜における CO2 減少の評価には、Mars Odyssey 探査機搭載のガンマ線分光計(GRS)によるアルゴンの測定結果を利用した [Noguchi et al., 2014]。上端高度での気温仮定の改善は、Mars Reconnaissance Orbiter(MRO)探査機搭載の熱赤外放射計(MCS)による気温を用いた気候値を新たに作成することで実現した。

再導出した気温を用いて南半球における極夜域の CO2 過飽和イベントを解析したところ、従来のデータセットで示されていたよりもはるかに高頻度で CO2 過飽和が発生しており、過去の研究では CO2 過飽和が過小評価されていた可能性が明らかとなった。また、CO2 過飽和は南緯 65 度以南で多く発生し、冬至の頃には過飽和域が高度 15 km 付近まで達していた。冬至後にはその厚みが急速に縮小するが、高緯度では地表面付近で持続していた。さらに、春分以降も地表付近には低温層が残存し、強い逆転層を形成していた。